mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
refactor various files
This commit is contained in:
12
.gitignore
vendored
12
.gitignore
vendored
@@ -1,3 +1,15 @@
|
|||||||
|
# General stuff
|
||||||
__pycache__/
|
__pycache__/
|
||||||
typst/
|
typst/
|
||||||
|
*.o
|
||||||
|
a.out
|
||||||
|
|
||||||
|
# Some artifacts
|
||||||
Hahn_gamma*
|
Hahn_gamma*
|
||||||
|
|
||||||
|
# Seperate out all pdfs for now
|
||||||
|
*.pdf
|
||||||
|
|
||||||
|
# Just the VL PDFs?
|
||||||
|
*VL*.pdf
|
||||||
|
|
||||||
|
|||||||
@@ -1 +1,4 @@
|
|||||||
bb
|
# Contains the source for my Studies
|
||||||
|
|
||||||
|
This repo is split into the study semesters.
|
||||||
|
|
||||||
|
|||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
S1/AGLA/conf.pdf
BIN
S1/AGLA/conf.pdf
Binary file not shown.
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
S1/GdCP/a.out
BIN
S1/GdCP/a.out
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
BIN
S1/ReMe/VL17.pdf
BIN
S1/ReMe/VL17.pdf
Binary file not shown.
BIN
S1/ReMe/VL18.pdf
BIN
S1/ReMe/VL18.pdf
Binary file not shown.
BIN
S1/ReMe/VL19.pdf
BIN
S1/ReMe/VL19.pdf
Binary file not shown.
BIN
S1/ReMe/VL4.pdf
BIN
S1/ReMe/VL4.pdf
Binary file not shown.
1
S1/input.txt
Normal file
1
S1/input.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
# Input file for the current file of the semester
|
||||||
1
S2/AGLA/.anki
Normal file
1
S2/AGLA/.anki
Normal file
@@ -0,0 +1 @@
|
|||||||
|
University::Math::S2
|
||||||
2
S2/AGLA/.unicourse
Normal file
2
S2/AGLA/.unicourse
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
name: Lineare Algebra und Analytische Geometrie II
|
||||||
|
short: AgII
|
||||||
7
S2/AGLA/VL/AgIIVL1.typ
Normal file
7
S2/AGLA/VL/AgIIVL1.typ
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
// AGLA template
|
||||||
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
= Uebersicht
|
||||||
|
|
||||||
1
S2/AGLA/index.typ
Normal file
1
S2/AGLA/index.typ
Normal file
@@ -0,0 +1 @@
|
|||||||
|
= AGLA II
|
||||||
14
S2/AGLA/preamble.typ
Normal file
14
S2/AGLA/preamble.typ
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
#import "../../default.typ": *
|
||||||
|
|
||||||
|
#let conf(num: none, ueb: false, body) = {
|
||||||
|
// Global settings
|
||||||
|
show: default
|
||||||
|
|
||||||
|
// Set the header
|
||||||
|
[AGLA II \ Vorlesung #(num)]
|
||||||
|
// Make tcahe outline
|
||||||
|
outline()
|
||||||
|
|
||||||
|
// load the document
|
||||||
|
body
|
||||||
|
}
|
||||||
7
S2/AGLA/template.typ
Normal file
7
S2/AGLA/template.typ
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
// AGLA template
|
||||||
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
= Uebersicht
|
||||||
|
|
||||||
132
S2/AnaMech/VL/AnMeVL4.typ
Normal file
132
S2/AnaMech/VL/AnMeVL4.typ
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
|
#show: conf.with(num: 4)
|
||||||
|
|
||||||
|
= Grundlagen der Netwon'schen Mechanik
|
||||||
|
|
||||||
|
+ MP
|
||||||
|
+ Das Ziel ist die Trajektorie im $RR^n $ (Euklidischer Raum)
|
||||||
|
|
||||||
|
Die Wahl des KS (kartesisch)
|
||||||
|
- Wahl des Urprungs
|
||||||
|
- Orietierung der Achsen
|
||||||
|
$
|
||||||
|
arrow(r) (t)= arrow(e)_(x) + y (t) arrow(e)_(y) + z (t) arrow(e)_(z) \
|
||||||
|
= vec(x,y,z)_(x y z) \
|
||||||
|
arrow(r)= r arrow(e)_(r) \
|
||||||
|
r = abs(arrow(r))= sqrt(x^2 + y^2 + z^2 )
|
||||||
|
$
|
||||||
|
|
||||||
|
Wir betrachten die nicht-relativistische Mechanik, sodass die Zeit absolut ist $t = t'$. \
|
||||||
|
Wir fordern jedoch die Forminvarianz aller physikalischer Gesetze.
|
||||||
|
|
||||||
|
Beschleunigte Bezugsysteme werden wir nicht verlangen, dass die selben Gesetze entstehen. \
|
||||||
|
+ Die Forminvarianz soll in allen Inertialsystemen gelten.
|
||||||
|
+ $"KS"= "IS"==> "KS' mit" arrow(v)_("rel") "bewegt auch IS"$
|
||||||
|
|
||||||
|
Es gilt, dass in beiden Koordinatensystemen die Kraft gleich die zeitliche Ableitung des Impulses ist.
|
||||||
|
|
||||||
|
== Wechsel zwischen IS
|
||||||
|
|
||||||
|
Galilei-Tafel
|
||||||
|
$
|
||||||
|
t'= t \
|
||||||
|
arrow(r')= arrow(r)-arrow(v)_("rel") t \
|
||||||
|
==> "Newton II invariant"
|
||||||
|
$
|
||||||
|
|
||||||
|
== Newtons Prinzip der Bestimmtheit
|
||||||
|
|
||||||
|
+ AWP: $arrow(r) (t_0 ),dot(arrow(r)) (t_0 )==> arrow(r) (t), forall t $
|
||||||
|
- Messwerte zur Zeit $t$: $arrow(r) (r),dot(arrow(r)),...,O(arrow(r),dot(arrow(r)),t) "(QM)"$
|
||||||
|
$==>$ Euklidischen Raum bei mikroskopischen Kraeften
|
||||||
|
+ Effektive Probleme mit Reibung
|
||||||
|
- Dynamik auf gekruemmten Flaechen
|
||||||
|
|
||||||
|
Mathematische Ungenauigkeiten kommen durch eingefuehrte Idealisierungen.
|
||||||
|
|
||||||
|
== Newton II
|
||||||
|
In der mikroskopischen Physik gilt die Gleichung
|
||||||
|
$
|
||||||
|
m dot.double(arrow(r))= arrow(f) (r,dot(arrow(r)),t).
|
||||||
|
$
|
||||||
|
Die Masse und die Kraefte kommen aus experimentellen Beobachtungen.
|
||||||
|
|
||||||
|
== Kraefte
|
||||||
|
|
||||||
|
Es gibt jetzt $N$ MP mit den Ortsvektoren $arrow(r)_(i) $.
|
||||||
|
$
|
||||||
|
m_i dot.double(arrow(r))_(i) = arrow(f)_(i) (arrow(r)_(j) ,dot(arrow(r))_(j) ,t), j != i.
|
||||||
|
$
|
||||||
|
Das ergibt 3N Gleichungen.
|
||||||
|
|
||||||
|
WICHTIG: Naeherung, welche immer verwendet wurde, die des abgeschlossenen Systems.
|
||||||
|
|
||||||
|
Mikroskopisch ufndamentale Kraefte sind die #underline[Gravitaion] und die #underline[Elektro-/Magnetostatik]. Deren Potential ist Proporitional zu $r^(-1) $, d.h. sie sind ein radial Potiential. \
|
||||||
|
Die daraus resultierende Kraft ist eine Paarkraft
|
||||||
|
$
|
||||||
|
arrow(f)_(i j) = arrow(f)_(i j) (abs(arrow(r)_(i) - arrow(r)_(j) )).
|
||||||
|
$
|
||||||
|
|
||||||
|
Actio $= $ Reactio: $arrow(f)_(i j) = -arrow(f)_(j i) $.
|
||||||
|
|
||||||
|
Starke Version von Actio gleich Reactio: $arrow(f)_(i j) = f_(i j) (abs(arrow(r)_(i) -arrow(r)_(j) ))arrow(e)_(i j) , space f_(i j) = -f_(j i) , space arrow(e)_(i j) = (arrow(r)_(i) - arrow(r)_(j) ) / (abs(arrow(r)_(i) - arrow(r)_(j) )) $
|
||||||
|
|
||||||
|
|
||||||
|
Die kleinen $f$ sind die Kraefte, welche die MP gegenseitig auf sich ausueben und die grossen $F$ sind die globalen externen Kraefte. \
|
||||||
|
Allgemeine Form
|
||||||
|
$
|
||||||
|
arrow(f)_(i) = sum_(j != i)^(N) arrow(f)_(n) + arrow(f)^("ext") _(i).
|
||||||
|
$
|
||||||
|
Fuer ein abgeschlossenes System gilt die Naeherung
|
||||||
|
$
|
||||||
|
arrow(f)^("ext") _(i) = arrow(0) space forall i.
|
||||||
|
$
|
||||||
|
|
||||||
|
= Abgeschlossene Systeme
|
||||||
|
- N MP $==>$ $m_i $
|
||||||
|
- $m_i != m_i (t)$ Q: Was bedeutet das?
|
||||||
|
- Starkes Actio gleich Reactio
|
||||||
|
|
||||||
|
== Massenschwerpunkt
|
||||||
|
$
|
||||||
|
arrow(R)= (1) / (M) sum_(i=1)^(N) m_i arrow(r)_(i) , space M = sum m_i \
|
||||||
|
M dot.double(arrow(R))= sum m_i dot.double(arrow(r) )_(i) = sum (sum _(j != i) arrow(f)_(i j) + arrow(f)^("ext") _(i) )= sum arrow(f)^("ext") _(i) = arrow(F)^("ext") \
|
||||||
|
M dot.double(arrow(R))= arrow(F)^("ext")
|
||||||
|
$
|
||||||
|
nur geschlossen, falls $arrow(F)^("ext") = "const"$.
|
||||||
|
|
||||||
|
$
|
||||||
|
arrow(R) (t)= arrow(V)_(0) (r)+ arrow(r)_(0)
|
||||||
|
$
|
||||||
|
|
||||||
|
Damit haben wir nur noch $6N - 6$ Gleichungen zu loesen.
|
||||||
|
|
||||||
|
= Gesamtimpuls
|
||||||
|
$
|
||||||
|
arrow(p)= sum arrow(p)_(i) = sum m_i dot(arrow(r))_(i) \
|
||||||
|
dot(arrow(p))= sum m_i dot.double(arrow(r))_(i) = M dot.double(arrow(R))
|
||||||
|
$
|
||||||
|
|
||||||
|
$
|
||||||
|
arrow(F)^("ext") = 0 <==> (dif arrow(p)) / (dif t) = 0 , space arrow(p) "erhalten"
|
||||||
|
$
|
||||||
|
|
||||||
|
== Gesamtdrehimpuls
|
||||||
|
|
||||||
|
$
|
||||||
|
arrow(L)&= sum arrow(l)_(i) = sum (arrow(r)times arrow(p)) \
|
||||||
|
&= sum m_i (arrow(r)_(i) times dot(arrow(r)))
|
||||||
|
$
|
||||||
|
|
||||||
|
$
|
||||||
|
dif / (dif t) arrow(L)= sum m_i (dot(arrow(r))times dot(arrow(r))+ arrow(r)times arrow(r))= sum arrow(r)times (sum _(i != j) arrow(f)_(i j) + arrow(f)^("ext") _(i) )\
|
||||||
|
sum arrow(r)times arrow(f)_(i j) = 1/2 sum (arrow(r)times arrow(f)+ arrow(r)times arrow(f))= 1/2 sum (arrow(r)_(i) - arrow(r)_(j) )times arrow(f)_(i j) = arrow(0)
|
||||||
|
$
|
||||||
|
|
||||||
|
Abgeschlossenes System: $(dif arrow(L)) / (dif t) = arrow(0)$
|
||||||
|
|
||||||
|
$arrow(f)^("ext") _(i) != arrow(0) ==> dot(arrow(L))= sum_(i=1)^(N) (arrow(r)_(i) times arrow(f)^("ext") _(i) )= arrow(N)$
|
||||||
|
|
||||||
|
Naechsten Montag weiter in den abgeschlossenen Systemen. Danach die zentral Potentiale.
|
||||||
|
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
#import "./preamble.typ": *
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
#show: conf.with(num: 1)
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
// Diff template
|
// Diff template
|
||||||
#import "./preamble.typ": *
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
#show: conf.with(num: 1)
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
|||||||
198
S2/DiffII/VL/DiIIVL4.typ
Normal file
198
S2/DiffII/VL/DiIIVL4.typ
Normal file
@@ -0,0 +1,198 @@
|
|||||||
|
// Diff template
|
||||||
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
|
#show: conf.with(num: 4)
|
||||||
|
|
||||||
|
|
||||||
|
= Wiederholung
|
||||||
|
|
||||||
|
Im $RR^n $ mit $p >= 1$ gilt $norm(x)_(p) = (sum_(i=1)^(n) abs(x_i )^(p) )^(1/p) $.
|
||||||
|
|
||||||
|
Dabei ist $(RR^n , norm(dot)_(p) )$ ein Banachraum. Ein Spezialfall fuer $p=2$ ist das Skalarprodukt.
|
||||||
|
|
||||||
|
Q: Erzeugt ein Skalarprodukt immer eine Norm?
|
||||||
|
|
||||||
|
= Hilbertraeume
|
||||||
|
|
||||||
|
Zur Erinnerung fuer einen Vektorraum $V$ ist ein K-VR mit Skalarprodukt $angle.l dot \, dot angle.r$ und $norm(dot):= sqrt(angle.l dot \, dot angle.r)$, dann gilt:
|
||||||
|
$
|
||||||
|
abs(angle.l x \, y angle.r) <= norm(x)dot norm(y) space forall x,y in V.
|
||||||
|
$
|
||||||
|
|
||||||
|
#lemma[
|
||||||
|
Sei V ein K-VR mit $K in {RR,CC}$ mit Skalarprodukt $angle.l dot\,dot angle.r$. Dann definiert $norm(x)= sqrt(angle.l x\,x angle.r) , space x in V$ eine Norm auf V.
|
||||||
|
]
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Dreiecksungleichung anwenden.
|
||||||
|
$
|
||||||
|
norm(x+y)^2 = angle.l x+y \, x+y angle.r = angle.l x \, x angle.r + angle.l x \, y angle.r + angle.l y \, x angle.r + angle.l y \, y angle.r
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Sei V ein K-Vr mit $K in {RR,CC}$ mit Skalarprodukt $angle.l dot \, dot angle.r$. Wir nennen V einen *Hilbertraum* falls V unter der erzeugten Norm $norm(x)= sqrt(angle.l x \, x angle.r) , space x in V$, vollstaendig ist.
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
- $RR^n $ mit dem Standardskalarprodukt ist ein Hilbertraum.
|
||||||
|
]
|
||||||
|
|
||||||
|
Ein weiteres Beispiel ist der Folgenraum $l^2 $.
|
||||||
|
|
||||||
|
Sei $l^2 := {a = (a_n )_(n in NN): a_n in CC space forall n in NN, sum_(i=1)^(oo) abs(a_n )^2 < oo }$.\
|
||||||
|
Fuer $a in l^2 $ definiere
|
||||||
|
$
|
||||||
|
norm(a)_(2) = (sum_(n=1)^(oo) abs(a_n )^2 )^(1/2).
|
||||||
|
$
|
||||||
|
Sind $a,b in l^2 , space N in NN$, so gilt
|
||||||
|
$
|
||||||
|
sum_(i=0)^(oo) abs(a_n macron(b_n )) <=^("Cauchy-Schwarz") (sum_(i=0)^(oo) abs(a_n )^2 )^(1/2) (sum_(i=0)^(oo) abs(b_n )^2 )^(1/2) <= norm(a)^(2) norm(b)^(2).
|
||||||
|
$
|
||||||
|
Also ist $angle.l a \, b angle.r = sum_(i=0)^(oo) a_n macron(b_n )$ absolut konvergent.
|
||||||
|
|
||||||
|
Behauptung: $l^2 $ ist ien C-VR, denn sind $a,b in l^2 , space lambda in CC$ so gilt
|
||||||
|
$
|
||||||
|
sum_(i=0)^(oo) abs(a_n + lambda b_n )^2 <= sum_( )^(oo) (abs(a_n )^2 + 2 abs(a_n )abs(lambda b_n )+ abs(lambda b_n )^2 ) \
|
||||||
|
<= norm(a)^2 + 2 abs(lambda)norm(a)norm(b)+ norm(b)^2 abs(lambda)^2 < oo.
|
||||||
|
$
|
||||||
|
|
||||||
|
T: $angle.l dot \, dot angle.r$ definiert ein Skalarprodukt auf $l^2 $.
|
||||||
|
|
||||||
|
#theorem[
|
||||||
|
$l^2 $ ist unter dem Skalarprodukt $angle.l a \, b angle.r = sum_( )^(oo) a_n macron(b_n )$ ein Hilbertraum.
|
||||||
|
]
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Sei $a^(k) = (a_n ^(k) )_(n in N)$ eine Cauchy-Folge im $l^2 $. \
|
||||||
|
Fuer $epsilon > 0$ wahle $N in NN$ sodass $norm(a^(k) - a^(l) )_(2) < epsilon space forall n, l <= N$. \
|
||||||
|
Dann gilt fuer $k,l >= N , space n in NN$
|
||||||
|
$
|
||||||
|
abs(a_n ^(k) - a_n ^(l) ) <= sum_(i=0)^(oo) abs(a_n ^(k) - a_n ^(l) )^2 = norm(a^(k) - a^(l) ) < epsilon^2 .
|
||||||
|
$
|
||||||
|
Es folgt dass $(a_n ^(k) )_(n in NN) $ fuer jeder $n in NN$ eine Cauchy-Folge ist, sei $a_n = lim_(k -> oo) a_n ^(k) in CC , space a = (a_n )^(n in NN) $.
|
||||||
|
|
||||||
|
Betrachte $m in NN$ und $k,l >= NN$. Dann gilt
|
||||||
|
$
|
||||||
|
sum_(i=0)^(oo) abs(a_n^(k) - a_n ^(l) ) ^2 < epsilon^2.
|
||||||
|
$
|
||||||
|
Im Grenzwert $l -> oo$ folgt $sum_(i=0)^(oo) abs(a_n ^(k) - a_n )^2 < epsilon^2 space forall m in NN forall k >= N$. Im Grenzwert $m -> oo$ folgt $sum_(i=0)^(oo) abs(a_n ^(k) - a_n )^2 <= epsilon^2 space forall k >= N $, also $a^(k) - a in l^2 $ und damit $a in l^2 $. Aus der zweiten Ungleichung folgt ausserdem, dass $lim_(n -> oo) a^(n) = a$ in $l^2 $.
|
||||||
|
]
|
||||||
|
|
||||||
|
Nun folgt eine Anwendung.
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Sei X eine Menge, $(Y,d_(y) )$ eine vollstaendiger metrischer Raum und $f_n: X -> Y , space n in NN$ eine FOlge von Abbildungen. Wir sagen, dass $(f_n )_(n in NN) $ gleichmaessig konvergent ist, falls gilt
|
||||||
|
$
|
||||||
|
forall epsilon > 0 exists N in NN forall x in X forall k,l >= N: d_(y) (f_k (x), f_(l) (x)) < epsilon.
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
+ Ist $(f_n )_(n in NN)$ gleichmaeig konvergent, so ist $(f_n (x))_(k in NN)$ fuer jedes $x in X$ eine Cauchy-Folge, d.h. $exists f (x) := lim_(n -> oo) f_n (x) space forall x in X $.
|
||||||
|
+ Ist $(f_n )_(n in NN) $ gleichmaessig konvergent mit $f (x) = lim_(n -> oo) f_n (x) , space x in X$ so gibt es fuer jedes $epsilon>0$ ein $N in NN$ sodass $d_(y) (f (x), f_n (x))<epsilon space forall n >= N forall x in X$.
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Bilde den Grenzwert $k -> oo$ in der Definition einer gleichmaessig konvergenten Folge von Abbildungen und verwende
|
||||||
|
$
|
||||||
|
lim_(n -> oo) d_(y) (f_n (x), f_(l) (x))= d_(y) (lim_(n -> oo) f_n (x), f_(l) (x)).
|
||||||
|
$
|
||||||
|
Dabei wird benutzt, dass
|
||||||
|
$
|
||||||
|
abs(d (x_k ,y)- d (y,y)) <= d (x_k x).
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Sei $P (z) = sum_( )^(oo) a_n z^(m) $ eine Potenzreihe mit $a_n in CC$, Konvergenzradius $r (P) >0$ und $0 < delta<r (P)$. So konvergiert die Funktionenfolge
|
||||||
|
$
|
||||||
|
P_n; B_(delta) -> CC
|
||||||
|
$
|
||||||
|
#highlight[TODO: finish on why this series converges]
|
||||||
|
]
|
||||||
|
|
||||||
|
Q: Sei $A in M_(m times m) $. Koennen wir aehnlich $sum_(i=0)^(oo) a_i A^(i) $ definieren?
|
||||||
|
|
||||||
|
_PAUSE_
|
||||||
|
|
||||||
|
= Operatornorm
|
||||||
|
|
||||||
|
Wie kann man eine sinnvolle Norm fuer Matrizen $A in M_(n times m)$ (Operatoren) definieren?
|
||||||
|
|
||||||
|
Wie kann ich eine Konvergez fuer die lineare Abbildung $sum_(i=0)^(oo) a_i A^(i) $ definieren?
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Seien $(V,norm(dot)_(V) ),(W,norm(dot)_(W) )$ normierte K-VR und eine lineare Abbildungen $A: V -> W$ gegeben. Wir nennen A *beschraenkt*, falls es eine positiv reele Konstante $C$ gilt, sodass $norm(A x)_(W) <= C norm(x)_(V) space forall x in V $. \
|
||||||
|
Ist A beschraenkt, so defninieren wir die *Operatornorm* von A durch
|
||||||
|
$
|
||||||
|
norm(A) := sup_(x in V \ x != 0) (norm(A x)_(W) ) / (norm(x)_(V) ).
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Betrachte $A = mat(
|
||||||
|
3, 0;
|
||||||
|
0, 2;
|
||||||
|
) $ als lineare Abbildung $RR^2 -> RR^2 $ mit $norm(dot)_(2) $ auf $RR^2 $. Dann gelten die Aussagen
|
||||||
|
$
|
||||||
|
norm(A x)_(2) = sqrt((3 x_1 )^2 + (2 x_2 )^2 ) <= 3 norm((x_1 ,x_2 ))_(2) space forall x in RR^2 \
|
||||||
|
norm(A e_1 )_(2) = norm((3,0))_(2) = 3 norm(e_1 )_(2),
|
||||||
|
$also ist $norm(A) = 3$.
|
||||||
|
]
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
Eine lineare Abbildung $A: V -> W$ zwischen K-VR $V,W$ nenn wir auch linearen Operator.
|
||||||
|
]
|
||||||
|
|
||||||
|
#lemma[
|
||||||
|
Seien $(V,norm(dot)_(V) ),(W,norm(dot)_(W) )$ normierte K-VR, $dim V < oo$ und $A: V -> W$ eine lineare Abbildung. Dann ist A beschraenkt.
|
||||||
|
]
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Die erste Intuition ist, dass durch die endliche Dimension und die Linearitaet die Aussage entsteht.
|
||||||
|
|
||||||
|
Fuer $x in V$ sei $norm(x)= norm(x)_(V) +norm(A x)_(W) $. Dann ist $norm(dot): V -> RR^(+) $ eine Norm auf V (Task).
|
||||||
|
Nach Satz folgt, dass es ein $C>0$ gibt sodass
|
||||||
|
$
|
||||||
|
norm(x) <= C norm(x)_(V) space forall x in V. \
|
||||||
|
==> norm(A x)_(W) <= C norm(x)_(V) space forall x in V.
|
||||||
|
$
|
||||||
|
|
||||||
|
Man kann den Beweis von den Aequivalenzen von Normen verwenden.
|
||||||
|
]
|
||||||
|
|
||||||
|
Ein Beispiel fuer einen unbeschraenkten lineare n Operator ist
|
||||||
|
|
||||||
|
Der Startraum ist hier $V = C^(1) ([0,1])$. Und der Endraum $W = CC$.\
|
||||||
|
Mit der verwendeten Norm $norm(f)= sup_(t in [0,1]) abs(f (t))$.
|
||||||
|
|
||||||
|
Nun ist die Abbildung $A: V -> W$ gegeben durch $A f := f'(0)$. Dann ist A nicht beschraenkt, da Oszillierende Funktionen wie $sin (n x)$. Denn $norm(f_n ) <= 1$ aber $abs(f'_(n) (0))= n$.
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
Ist $A: V -> W$ ein beschraenkter, linearer Operator, so gilt fuer $x,y in V$:
|
||||||
|
$
|
||||||
|
d_(W) (A x,A y) = norm(A x - A y)_(W) = norm(A (x - y))_(W) <= norm(A) norm(x - y)_(V) = norm(A) dot d_(V) (x,y).
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Seien $(X,d_(x) )$ und $(Y,d_(y) )$ metrische Raeume und $f: X -> Y$ eine Abbildung. Wir nennen $f$ Lipschitz-stetig falls es ein $L >=0 $ gibt sodass
|
||||||
|
$
|
||||||
|
d_(y) (f (y_1 ), f (y_2 )) <= L d_(x) (y_1, y_2 ) space forall y_1, y_2 in X.
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#theorem[
|
||||||
|
Sei $A: V -> W$ ein linearer Operator zwischen normierten Raeumen $W,V$. Dann sind die folgenden Aussagen aequivalent:
|
||||||
|
+ A ist beschraenkt
|
||||||
|
+ A ist stetig
|
||||||
|
+ A ist stetig an der Stelle $x = 0$ $==>$ A ist beschraenkt
|
||||||
|
]
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Sei A stetig in $x = 0$. Wegen $A dot 0 = 0$ gibt es ein $delta > 0$ sodass $norm(A x)_(W) <= 1$ fuer alle $x in V "mit" norm(x)_(V) <= delta$. Sei $x in V \\ {0}$. Dann ist $norm((delta) / (norm(x)_(V) ) )_(V) = delta$
|
||||||
|
und damit $1 >= norm(A (delta) / (norm(x)_(V) ) x_(W) )= norm((delta) / (norm(x)_(V) ) A x )_(W) = (delta) / (norm(x)_(V) ) norm(A x)_(W) $.
|
||||||
|
|
||||||
|
Es folgt $norm(A x)_(W) <= (1) / (delta)norm(x)_(V) space forall x in V $ und A ist beschraenkt.
|
||||||
|
|
||||||
|
]
|
||||||
|
|
||||||
Binary file not shown.
@@ -1,5 +1,5 @@
|
|||||||
// Diff template
|
// Diff template
|
||||||
#import "./preamble.typ": *
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
#show: conf.with(num: 1)
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
|||||||
107
S2/Neuro/VL/NeuroVL2.typ
Normal file
107
S2/Neuro/VL/NeuroVL2.typ
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
= Membrane Potential
|
||||||
|
|
||||||
|
Outside the cells in the brain there is salt.
|
||||||
|
Inside there is potassium.
|
||||||
|
|
||||||
|
== Prerequisites for a Neuron to fire
|
||||||
|
|
||||||
|
_Watch the embedded movie._
|
||||||
|
|
||||||
|
There are different potentials build up in the membrane.
|
||||||
|
|
||||||
|
+ The charge is in equillibrium. But there is a gradient of Pr and Cl
|
||||||
|
+ Cloride will diffuse $==>$ on that side there are too many negative charges
|
||||||
|
+ The negative charge pushes the potassium to this side
|
||||||
|
+ Finally a potassium gradient stabilizes
|
||||||
|
|
||||||
|
Why is the resulting potential negative?
|
||||||
|
|
||||||
|
== Nernst and general Nernst eqation
|
||||||
|
$
|
||||||
|
V_(x) = (R T) / (z F) ln ([X]_(o) ) / ([X]_(i) ) \
|
||||||
|
V_(x) = (R T) / (z F) ln (P_("K") [K]_(o) + P_("Cl") ["Cl"]_(o) + ... ) / (P_("K") [K]_(i) + P_("Cl") ["Cl"]_(i) + ... ) \
|
||||||
|
|
||||||
|
$
|
||||||
|
|
||||||
|
When the permeability for the potassium is low then the other ones play a bigger role.
|
||||||
|
Potential is only there when permeability is existing.
|
||||||
|
|
||||||
|
Q: What is similar to a low pass filter.
|
||||||
|
|
||||||
|
In reality there are multiple conducters connected in parralel. Also the conductivity of the Na and K channles are changable.
|
||||||
|
|
||||||
|
Q: What does a conductivity of $oo$ mean?
|
||||||
|
|
||||||
|
= Hodgkin and Huxley
|
||||||
|
|
||||||
|
Q: What have they done?
|
||||||
|
A: They used squids to measure the axons, because they are $1"mm"$ thick
|
||||||
|
|
||||||
|
Types of Neuronal Recording Methods
|
||||||
|
- EEG (on top of the head)
|
||||||
|
- ECoG (small hole in the head)
|
||||||
|
- Extracellular (needles in the brain)
|
||||||
|
- Intra cellular (needles in the cell of the brain)
|
||||||
|
|
||||||
|
== Action Potential
|
||||||
|
|
||||||
|
+ The cell gets excited
|
||||||
|
+ Chainreaction of channel opening and gradient stabilisation
|
||||||
|
- Sodium channels open
|
||||||
|
- K chanels open
|
||||||
|
- Na channels become refactory
|
||||||
|
- ...
|
||||||
|
+ Refactory period
|
||||||
|
+ ...
|
||||||
|
|
||||||
|
#highlight[TODO: continue the steps]
|
||||||
|
|
||||||
|
Currents can add up to trigger an AP. THe refactory period is the time after an AP when Na channles are inactive. The firing rate is increaed with a highter input strenght.
|
||||||
|
|
||||||
|
The lenght of the potiential depends on the type of cell. Then the refactory period is also longer. \
|
||||||
|
The maximum firing rate is limited by the absolute refactory period.
|
||||||
|
|
||||||
|
== The actual model
|
||||||
|
|
||||||
|
$
|
||||||
|
I_("inj") = I_(C) + sum I_(k) (t) , space C = Q/u , space I_(C) = C (dif u) / (dif t) = C (dif V) / (dif t) \
|
||||||
|
I_(x) = I_(x) \
|
||||||
|
C (dif V_m ) / (dif t) = - sum I_(k) + I_("inj") (t) \
|
||||||
|
sum I_k = g_("Na") (V_m - V_("Na") )+ g_(K) (V_m - V_(K) )+ g_(L) (V_(m) - V_(L) )\
|
||||||
|
C (dif V_m ) / (dif t) = - g_("Na") (V_m - V_("Na") )- g_(K) (V_m - V_(K) )- g_(L) (V_(m) - V_(L) ) + I_("inj") (t) \
|
||||||
|
$
|
||||||
|
|
||||||
|
Now the Equation becomes time dependent
|
||||||
|
|
||||||
|
$
|
||||||
|
C (dif V_m ) / (dif t) = - macron(g)_("Na") m^(3) h (V_m - V_("Na") )- macron(g)_(K) n (V_m - V_(K) )- macron(g)_(L) (V_(m) - V_(L) ) + I_("inj") (t). \
|
||||||
|
dot(x)= - (1) / (tau_(x) u_(b)) A .
|
||||||
|
$
|
||||||
|
|
||||||
|
Capacitance is a biological constant.
|
||||||
|
|
||||||
|
== Voltabe clamp method
|
||||||
|
|
||||||
|
With this method it is possible to stimulate a cell and measure the floating current at the same time.
|
||||||
|
|
||||||
|
There are substances to kill certain types of channels in the cell. If done so the graph of the potential changes.
|
||||||
|
|
||||||
|
Also there is a method to measuer individual channels and their current they leave through.The AP is a positive feedback loop.
|
||||||
|
|
||||||
|
The sodium channels cannot immeadiately open again. It takes about 1ms for them to open again. When measuring one always measurers multiple fibres (Suberposition).
|
||||||
|
|
||||||
|
In the heart there are calcium channels.
|
||||||
|
|
||||||
|
_Max firing frequency is about $1"kHz"$_
|
||||||
|
|
||||||
|
== Propagation of AP
|
||||||
|
|
||||||
|
There are multiple Methods of propagation the AP. One is to recreate the AP along the way (this takes time but is faster with higher diameter of the axon).
|
||||||
|
|
||||||
|
The other method is the saltatory "jumpy" conduction. This is much faster and the AP jumps between the isolations.
|
||||||
|
|
||||||
|
|
||||||
20
S2/Neuro/preamble.typ
Normal file
20
S2/Neuro/preamble.typ
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
#import "../../default.typ": *
|
||||||
|
|
||||||
|
#let rot = math.op("rot")
|
||||||
|
#let grad = math.op("grad")
|
||||||
|
|
||||||
|
#let conf(num: none, date: "", body) = {
|
||||||
|
// Global settings
|
||||||
|
show: default
|
||||||
|
|
||||||
|
// Set the header
|
||||||
|
[ExPhy II \ Vorlesung #(num) \ #(date) \ Jonas Hahn]
|
||||||
|
|
||||||
|
// Make the outline
|
||||||
|
outline()
|
||||||
|
|
||||||
|
// load the document
|
||||||
|
body
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
#import "./preamble.typ": *
|
#import "../preamble.typ": *
|
||||||
|
|
||||||
#show: conf.with(num: 1)
|
#show: conf.with(num: 1)
|
||||||
|
|
||||||
|
|||||||
1
S3/input.txt
Normal file
1
S3/input.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
# Input file for the current file of the semester
|
||||||
@@ -1,3 +1,4 @@
|
|||||||
# Links
|
# Links
|
||||||
|
|
||||||
Preparation for the third semester links
|
Preparation for the third semester links.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user