mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 14:54:25 -05:00
30 lines
728 B
Typst
30 lines
728 B
Typst
// Main VL template
|
|
#import "../preamble.typ": *
|
|
|
|
// Fix theorems to be shown the right way in this document
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
#show: thmrules
|
|
|
|
// Main settings call
|
|
#show: conf.with(
|
|
// May add more flags here in the future
|
|
num: 5,
|
|
type: 0, // 0 normal, 1 exercise
|
|
date: datetime.today().display(),
|
|
//date: datetime(
|
|
// year: 2025,
|
|
// month: 5,
|
|
// day: 1,
|
|
//).display(),
|
|
)
|
|
|
|
= Uebersicht
|
|
|
|
#theorem[
|
|
Sei $U subset RR^n times RR^n $ offen, $(a,b) in U, f: U -> RR^n $ stetig diffbar mit $f (a,b) = 0$ und $det (partial_(y) f^(i) )_(1 <= i, j <= n) .. (a,b) != 0 $. Dann gibt es eine difbare Funnktion $g: U' -> U''$ sodass gilt
|
|
$
|
|
f (x,y) = 0 "fuer ein " x in U', y in U'' <=> y = g (x).
|
|
$
|
|
]
|
|
|