Files
university/S3/MaPhyIII/VL/MaPhIIIVL3.typ
2025-11-07 15:40:53 +01:00

109 lines
3.3 KiB
Typst

// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 3,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
Wiederholung der *Bessel'schen Ungleichung*. Betrachte $f in RR [- pi, pi] \, space c^(k) = 1/(2 pi) integral _(- pi) ^(pi) f (x) e ^(i k x) dif x$
$
==> sum abs(c^(k) )^2 <= norm(f)_(L^2 ) ^2 \
norm(f)_(L^2 ) ^2 = lr(angle.l f, f angle.r) \
lr(angle.l f, g angle.r) = 1/(2 pi) integral _(- pi) ^(pi) overline(f (x)) g (x) dif x
$
Im Beweis
$
norm(f - sum _(- n) ^(n) c_(k) e_(k) )^2 = lr(angle.l f - sum c_(k) e_(k) , f - sum c_(k) e_(k) angle.r) \
= norm(f)^2 - sum abs(c_(k))^2 -> 0 .. (n -> oo) "wenn" sum c_(k) e_(k) "gegen" f "bezueglich" norm(*)_(L^2 ) \
e_(k) (x) = e ^(i k x).
$
Es folgt die *Parseval'sche Gleichung*
$
norm(f)_(2) ^(2) = lim_(n -> oo) sum_(- n)^(n) abs(c_(k) )^2 \
==> sum abs(c_(k) )^2 < oo.
$
$==>$ Eindeutigkeit der Fourierkoeffizienten.
#proof[
Sei $f = sum c_(k) e_(k) \, space g = sum d_(k) e_(k) $. Mit $c_(k) = lr(angle.l e_(k) , f angle.r) \, space d_(k) = lr(angle.l e_(k) , g angle.r)$.
Ist $f != g$ so gilt
$
0 != norm(f - g)_(L^2 ) ^2 = sum abs(lr(angle.l e_(k) , f - g angle.r))^2 = sum abs(c_(k) - d_(k) )^2.
$
Angenommen $c_(k) = d_(k) forall k ==> 0 != 0 $. Widerspruch.
$f ~ g$ bezueglich der $norm(*)_(L_(1) ) :<==> f "und" g "auf Nullmenge verschieden sein duerfen" $.
Also $f, g in C [- pi, pi] ==>( f != g ==> exists x_0 in [- pi, pi]: f (x_0 ) != g (x_0 ))$.
Parseval $==>$ $sum_(k=1)^(oo) 1/k^2 = pi^2 /6$.
#figure(
image("typst-assets/drawing-2025-11-07-10-46-32.rnote.svg"),
)
$
f (x) = x "auf" [- pi, pi] \, space c_(k) = (- 1)^(k) ) i/k \, space k != 0, c_0 = 0 \
==> sum_(- oo)^(oo) abs(c_(k) )^2 = 2 sum_(k=1)^(oo) 1/k^2 =^("Parseval") lr(angle.l f, f angle.r) = 1/(2 pi) integral _(- pi) ^(pi) x^2 dif x = pi^2 /3
$
]
Die Schwingende Rechtecksmembran durch den Tayloransatz loesen
$
u (t, x, y) = sum _(n = 1) ^(oo) sum_(m = 1)^(oo) (a_(m, n) cos (sqrt(lambda_(n, m) ) c t) + b_(n, m) sin (sqrt(lambda_(n, m) ) c t)) nu_(n, m).
$
Cladni-Figuren in Wolframalpha.
= Kreisfoernige Membran
Wellengleichung
$
arrow(nabla) ^2 u = 1/v^2 partial _(t) ^2 u.
$
Produktansatz $==>$ $u = v (t) w (x, y)$.
Wenn man auf Polarkoordinaten transformiert, dann muessen die Randbedingungen alle erfuellt sein, was man durch den Limes prueft.
$
(partial _(x) ^2 + partial _(y) ^2 ) v = - lambda v
$
Es wird dann wieder ein Ansatz gemacht
$
V (r, theta) = R (r) A (theta) \
==> (r^2 R'' + v R')1/R + lambda r^2 = - (A'') / (A).
$
$
1/r partial _(r) (r partial _(r) (R (r) A (theta))) + 1 / r^2 partial _(theta) ^2 (R (r) A (theta)) + lambda R (r) A (theta) = ^(!) 0
$
Potenzreihenansatz als
$
f (rho ) = sum a_(k) rho^(k).
$
Es wird gleichmaessige Konvergenz angennommen. Es folgt
$
rho^2 f'' (rho) = rho^2 (sum a_(k) k rho ^(k - 1) )' = rho^2 sum a_(k) k (k - 1) rho ^(k - 2).
$
Nachdem die anderen Teile ausgerechnet wurden kann ein Koeffizientenvergleich gemacht werden.