mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 14:54:25 -05:00
109 lines
3.3 KiB
Typst
109 lines
3.3 KiB
Typst
// Main VL template
|
|
#import "../preamble.typ": *
|
|
|
|
// Fix theorems to be shown the right way in this document
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
#show: thmrules
|
|
|
|
// Main settings call
|
|
#show: conf.with(
|
|
// May add more flags here in the future
|
|
num: 3,
|
|
type: 0, // 0 normal, 1 exercise
|
|
date: datetime.today().display(),
|
|
//date: datetime(
|
|
// year: 2025,
|
|
// month: 5,
|
|
// day: 1,
|
|
//).display(),
|
|
)
|
|
|
|
= Uebersicht
|
|
|
|
Wiederholung der *Bessel'schen Ungleichung*. Betrachte $f in RR [- pi, pi] \, space c^(k) = 1/(2 pi) integral _(- pi) ^(pi) f (x) e ^(i k x) dif x$
|
|
$
|
|
==> sum abs(c^(k) )^2 <= norm(f)_(L^2 ) ^2 \
|
|
norm(f)_(L^2 ) ^2 = lr(angle.l f, f angle.r) \
|
|
lr(angle.l f, g angle.r) = 1/(2 pi) integral _(- pi) ^(pi) overline(f (x)) g (x) dif x
|
|
$
|
|
|
|
Im Beweis
|
|
$
|
|
norm(f - sum _(- n) ^(n) c_(k) e_(k) )^2 = lr(angle.l f - sum c_(k) e_(k) , f - sum c_(k) e_(k) angle.r) \
|
|
= norm(f)^2 - sum abs(c_(k))^2 -> 0 .. (n -> oo) "wenn" sum c_(k) e_(k) "gegen" f "bezueglich" norm(*)_(L^2 ) \
|
|
e_(k) (x) = e ^(i k x).
|
|
$
|
|
|
|
Es folgt die *Parseval'sche Gleichung*
|
|
$
|
|
norm(f)_(2) ^(2) = lim_(n -> oo) sum_(- n)^(n) abs(c_(k) )^2 \
|
|
==> sum abs(c_(k) )^2 < oo.
|
|
$
|
|
$==>$ Eindeutigkeit der Fourierkoeffizienten.
|
|
|
|
#proof[
|
|
Sei $f = sum c_(k) e_(k) \, space g = sum d_(k) e_(k) $. Mit $c_(k) = lr(angle.l e_(k) , f angle.r) \, space d_(k) = lr(angle.l e_(k) , g angle.r)$.
|
|
Ist $f != g$ so gilt
|
|
$
|
|
0 != norm(f - g)_(L^2 ) ^2 = sum abs(lr(angle.l e_(k) , f - g angle.r))^2 = sum abs(c_(k) - d_(k) )^2.
|
|
$
|
|
Angenommen $c_(k) = d_(k) forall k ==> 0 != 0 $. Widerspruch.
|
|
$f ~ g$ bezueglich der $norm(*)_(L_(1) ) :<==> f "und" g "auf Nullmenge verschieden sein duerfen" $.
|
|
|
|
Also $f, g in C [- pi, pi] ==>( f != g ==> exists x_0 in [- pi, pi]: f (x_0 ) != g (x_0 ))$.
|
|
Parseval $==>$ $sum_(k=1)^(oo) 1/k^2 = pi^2 /6$.
|
|
|
|
|
|
#figure(
|
|
image("typst-assets/drawing-2025-11-07-10-46-32.rnote.svg"),
|
|
)
|
|
|
|
$
|
|
f (x) = x "auf" [- pi, pi] \, space c_(k) = (- 1)^(k) ) i/k \, space k != 0, c_0 = 0 \
|
|
==> sum_(- oo)^(oo) abs(c_(k) )^2 = 2 sum_(k=1)^(oo) 1/k^2 =^("Parseval") lr(angle.l f, f angle.r) = 1/(2 pi) integral _(- pi) ^(pi) x^2 dif x = pi^2 /3
|
|
$
|
|
]
|
|
|
|
Die Schwingende Rechtecksmembran durch den Tayloransatz loesen
|
|
|
|
$
|
|
u (t, x, y) = sum _(n = 1) ^(oo) sum_(m = 1)^(oo) (a_(m, n) cos (sqrt(lambda_(n, m) ) c t) + b_(n, m) sin (sqrt(lambda_(n, m) ) c t)) nu_(n, m).
|
|
$
|
|
|
|
Cladni-Figuren in Wolframalpha.
|
|
|
|
= Kreisfoernige Membran
|
|
|
|
Wellengleichung
|
|
$
|
|
arrow(nabla) ^2 u = 1/v^2 partial _(t) ^2 u.
|
|
$
|
|
Produktansatz $==>$ $u = v (t) w (x, y)$.
|
|
|
|
Wenn man auf Polarkoordinaten transformiert, dann muessen die Randbedingungen alle erfuellt sein, was man durch den Limes prueft.
|
|
|
|
$
|
|
(partial _(x) ^2 + partial _(y) ^2 ) v = - lambda v
|
|
$
|
|
|
|
Es wird dann wieder ein Ansatz gemacht
|
|
$
|
|
V (r, theta) = R (r) A (theta) \
|
|
==> (r^2 R'' + v R')1/R + lambda r^2 = - (A'') / (A).
|
|
$
|
|
|
|
$
|
|
1/r partial _(r) (r partial _(r) (R (r) A (theta))) + 1 / r^2 partial _(theta) ^2 (R (r) A (theta)) + lambda R (r) A (theta) = ^(!) 0
|
|
$
|
|
|
|
Potenzreihenansatz als
|
|
$
|
|
f (rho ) = sum a_(k) rho^(k).
|
|
|
|
$
|
|
Es wird gleichmaessige Konvergenz angennommen. Es folgt
|
|
$
|
|
rho^2 f'' (rho) = rho^2 (sum a_(k) k rho ^(k - 1) )' = rho^2 sum a_(k) k (k - 1) rho ^(k - 2).
|
|
$
|
|
Nachdem die anderen Teile ausgerechnet wurden kann ein Koeffizientenvergleich gemacht werden.
|