mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
137 lines
3.9 KiB
Python
137 lines
3.9 KiB
Python
# Blatt 9 Aufgabe 5
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Const
|
|
m1 = 1.0 # kg
|
|
m2 = 1.0 # kg
|
|
l = 1.0 # m
|
|
g = 9.81 # m/s^2
|
|
|
|
# Params
|
|
T = 30.0#s
|
|
dt = 1e-4 # Timestep
|
|
dt2 = 1e-5 # Timestep 2 (very long times)
|
|
|
|
# Initial conditions
|
|
theta1_0 = np.pi / 2
|
|
theta2_0 = np.pi
|
|
omega1_0 = 0.0
|
|
omega2_0 = 0.0
|
|
|
|
def a(theta, omega):
|
|
# Unpack the params
|
|
theta1, theta2 = theta
|
|
omega1, omega2 = omega
|
|
delta = theta1 - theta2
|
|
|
|
# Represent the equation in terms of M and Q
|
|
# L, m1, m2 not used for the matrix equation ??
|
|
# Do I need to use the result from task a) ?
|
|
M = np.array([
|
|
[2, np.cos(delta)],
|
|
[np.cos(delta), 1]
|
|
])
|
|
Q = np.array([
|
|
-omega2**2 * np.sin(delta) - 2 * g * np.sin(theta1),
|
|
omega1**2 * np.sin(delta) - g * np.sin(theta2)
|
|
])
|
|
|
|
# TODO: better method?
|
|
return np.linalg.solve(M, Q) # Return the acc in a theta double dot vector
|
|
|
|
# Run the main simulation
|
|
def run_simulation(theta0, omega0, dt):
|
|
# Setup state arrays
|
|
times = np.arange(0, T, dt)
|
|
theta = np.zeros((len(times), 2))
|
|
omega = np.zeros((len(times), 2))
|
|
energy = np.zeros(len(times))
|
|
|
|
# Initialize
|
|
theta[0] = theta0
|
|
omega[0] = omega0
|
|
acc = a(theta[0], omega[0])
|
|
print(acc)
|
|
|
|
# Iterate
|
|
for i in range(1, len(times)):
|
|
# VV-step
|
|
theta[i] = theta[i-1] + omega[i-1] * dt + 0.5 * acc * dt**2
|
|
a_new = a(theta[i], omega[i-1])
|
|
omega[i] = omega[i-1] + 0.5 * (acc + a_new) * dt
|
|
acc = a_new
|
|
|
|
# Energy
|
|
theta1, theta2 = theta[i]
|
|
omega1, omega2 = omega[i]
|
|
E_kin = 0.5 * m1 * (l * omega1)**2 + 0.5 * m2 * (
|
|
(l * omega1)**2 + (l * omega2)**2 +
|
|
2 * l**2 * omega1 * omega2 * np.cos(theta1 - theta2)
|
|
)
|
|
E_pot = - (m1 + m2) * g * l * np.cos(theta1) - m2 * g * l * np.cos(theta2)
|
|
|
|
# Save the total energy
|
|
energy[i] = E_kin + E_pot
|
|
|
|
# Return timeline
|
|
return times, theta, omega, energy
|
|
|
|
# Start simulation
|
|
theta0 = [theta1_0, theta2_0]
|
|
omega0 = [omega1_0, omega2_0]
|
|
times, theta, _, energy = run_simulation(theta0, omega0, dt)
|
|
|
|
theta0 = [theta1_0 + 10 ** -7, theta2_0]
|
|
omega0 = [omega1_0, omega2_0]
|
|
_, theta2, _, _ = run_simulation(theta0, omega0, dt)
|
|
|
|
theta0 = [theta1_0, theta2_0]
|
|
omega0 = [omega1_0, omega2_0]
|
|
times3, theta3, _, energy3 = run_simulation(theta0, omega0, dt2) # Smaller timestep
|
|
|
|
# Quick plotting
|
|
|
|
# Energy
|
|
plt.figure(figsize=(12, 6))
|
|
plt.plot(times, energy, label='Total energy', color='blue')
|
|
plt.plot(times3, energy3, label='Total energy smaller dt', color='blue', linestyle="--")
|
|
plt.xlabel('Time [s]')
|
|
plt.ylabel('Energy [J]')
|
|
plt.title('Total energy of the double pendulum')
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
plt.savefig("double_energy.svg")
|
|
|
|
# Angles
|
|
plt.figure(figsize=(12, 6))
|
|
|
|
# Reduce angles
|
|
theta_mod = (theta + np.pi) % (2 * np.pi) - np.pi
|
|
theta2_mod = (theta2 + np.pi) % (2 * np.pi) - np.pi
|
|
|
|
# Plot with module (less information)
|
|
#plt.figure(figsize=(12, 6))
|
|
#plt.plot(times, theta_mod[:, 0], label=r'$\theta_1(t)$', color='red')
|
|
#plt.plot(times, theta_mod[:, 1], label=r'$\theta_2(t)$', color='green')
|
|
#plt.plot(times, theta2_mod[:, 0], label=r'$\theta_1(t)$ (small change)', color='blue')
|
|
#plt.plot(times, theta2_mod[:, 1], label=r'$\theta_2(t)$ (small change)', color='gold')
|
|
|
|
plt.plot(times, theta[:, 0] , label=r'$\theta_1(t)$', color='red')
|
|
plt.plot(times, theta[:, 1] , label=r'$\theta_2(t)$', color='green')
|
|
plt.plot(times3, theta3[:, 0] , label=r'$\theta_1(t)$ smaller dt', color='red', linestyle="--")
|
|
plt.plot(times3, theta3[:, 1] , label=r'$\theta_2(t)$ smaller dt', color='green', linestyle="--")
|
|
plt.plot(times, theta2[:, 0] , label=r'$\theta_1(t)$ changed', color='blue')
|
|
plt.plot(times, theta2[:, 1] , label=r'$\theta_2(t)$ changed', color='yellow')
|
|
|
|
plt.xlabel('Time [s]')
|
|
plt.ylabel('Angle [rad]')
|
|
plt.title('Trajectories of both pendulums')
|
|
plt.legend()
|
|
plt.grid(True)
|
|
plt.tight_layout()
|
|
plt.savefig("double_angles.svg")
|
|
|