mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 14:54:25 -05:00
236 lines
6.3 KiB
Typst
236 lines
6.3 KiB
Typst
// Main VL template
|
|
#import "../preamble.typ": *
|
|
|
|
// Fix theorems to be shown the right way in this document
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
#show: thmrules
|
|
|
|
// Main settings call
|
|
#show: conf.with(
|
|
// May add more flags here in the future
|
|
num: 2,
|
|
type: 0, // 0 normal, 1 exercise
|
|
date: datetime.today().display(),
|
|
//date: datetime(
|
|
// year: 2025,
|
|
// month: 5,
|
|
// day: 1,
|
|
//).display(),
|
|
)
|
|
|
|
= Uebersicht
|
|
|
|
Wenn man N Oszillatoren koppelt, erhlaet man ein System mit wieviel Eigenfrequenzen?
|
|
|
|
gekoppelte Oszillatoren und Eigenmoden
|
|
|
|
$
|
|
psi_(n) (t) = x_(n) exp(i omega t) \
|
|
==> m/K (dif psi_(n) ) / (dif t) = psi_(n + 1) - 2 psi_n + psi_(n - 1) \
|
|
==> - omega^2 m/k x_n = x_(n + 1) - 2 x_n + x_(n - 1).
|
|
$
|
|
|
|
Dabei wird unter festen und periodischen Raendern unterschieden.
|
|
|
|
- Randbedinungen selektonieren die Loesungen $omega''$ als Eigenwertproblem
|
|
- Matrizen symmetrisch $==>$ $N$ Eigenwerte
|
|
|
|
$
|
|
partial _(t) ^2 overline(psi) = underline(M) overline(psi) \
|
|
vec(psi_1 (t), psi_2 (t), ..., psi_(n) (t)) = overline(psi) (t) = sum _(j = 1) ^(N) underbrace(A_(j) e^(i omega_(j) t), Q_(j) \ "Normalmoden") arrow(e)_(j) + B_(j) e^(- i omega_(j) t) arrow(e)_(j) \
|
|
arrow(psi) (t) = sum _(i = 1) ^(N) Q_(j) (t) arrow(e)_(j) \
|
|
arrow(e)_(j) = e ^(i k a n) hat(e)_(z) .. k = (2 pi)/ lambda.
|
|
$
|
|
|
|
Die Dispersionsrelation ist gegeben durch
|
|
$
|
|
omega (k) = sqrt((2 k)/m) (1 - cos (k n))^(1/2).
|
|
$
|
|
Und in linearer Form als
|
|
$
|
|
omega = c k.
|
|
$
|
|
Die erste Brillouin-Zone gibt an, welche Wellen sich ausbreiten koennen. Wie kann man dort sehen, dass dies diskret ist.
|
|
|
|
Wir sagen
|
|
$
|
|
psi_1 = psi_(n + 1) \
|
|
e ^( i k n) = e ^( i k (n + 1)a) \
|
|
e ^(i k n a) = 1 \
|
|
==> 2 n a = 2 pi i \
|
|
k = (2 pi)/a i/n
|
|
$
|
|
|
|
Gegenueberstellung von Welle und Schwingung
|
|
|
|
Notationen
|
|
$
|
|
psi (t) = psi_0 sin (omega t + phi) \
|
|
psi (x, t) = psi_0 sin (k x - omega t + phi) \
|
|
psi (r, t) = psi_0 sin (k * r - omega t + phi).
|
|
$
|
|
Relationen
|
|
$
|
|
v = phi / (2 pi) \
|
|
T = 1/nu \
|
|
lambda = (2 pi)/k \
|
|
I prop abs(psi (x, t))^2.
|
|
$
|
|
|
|
= Die Wellengleichung
|
|
|
|
$
|
|
(diff^2 psi) / (diff t^2 ) = c^2 (diff^2 psi) / (diff x^2 ) \
|
|
dot.double(psi) = c ^2 psi''
|
|
$
|
|
|
|
$
|
|
psi (x, t) = psi_0 sin (k x - omega t) \
|
|
partial _(t) ^2 psi = omega^2 psi_0 sin (k x - omega t) \
|
|
omega/k = c = lambda nu \
|
|
partial _(x) ^2 psi = k^2 psi_0 sin (k x - omega t)
|
|
$
|
|
|
|
Als homogene DGL
|
|
$
|
|
dot.double(psi) - c^2 psi'' = underbrace(0, "Quelle").
|
|
$
|
|
Die allgemeine Loesung ist
|
|
$
|
|
psi (x, t) = f_(1) (x + c t) + f_2 (x - c t) , space f_1, f_2 in C^2 (RR).
|
|
$
|
|
In mehereren Dimenisonen
|
|
$
|
|
dot.double(psi) - c^2 arrow(nabla) ^2 psi = 0 , space psi = psi (arrow(r), t).
|
|
$
|
|
|
|
Kann ein Sperarationsansatz auch Loesungen liefern?
|
|
|
|
$
|
|
psi (arrow(r), t) = u (arrow(r)) e ^(i omega t) \
|
|
u (arrow(r)) ( - omega ^2 ) e ^( i omega t) = c ^2 e ^(i omega t) arrow(nabla) ^2 u (arrow(r)) \
|
|
==> arrow(nabla) ^2 u + k^2 u = 0 , space "stationaere Wellengleichung (Helmholtzgleichung)".
|
|
$
|
|
|
|
Die ruecklaufende Welle wird benoetigt um alle Randbedinungen abzudecken.
|
|
|
|
Wellen breiten sich mit einer linearen Superposition aus.
|
|
|
|
$
|
|
xi (x, t) = sin (x +- v t) = sin (k x - omega t)
|
|
$
|
|
|
|
= Skalare Wellen und Vektorwellen
|
|
|
|
$
|
|
psi (arrow(r), t) = arrow(A) e ^(i (arrow(k) arrow(r) - omega t))
|
|
$
|
|
|
|
Abhaengig von $arrow(A)$ ist die Welle entweder eine Skalarewelle oder eine Vektorwelle.
|
|
|
|
$
|
|
arrow(k) * arrow(r) = phi , space "Normalendarstellung einer Ebene" \
|
|
psi (arrow(r), t) = A e ^(i (arrow(k) arrow(r) - omega t)) , space "ebene Welle" \
|
|
psi (arrow(r), t) = A e ^(i (k r - omega t)) .
|
|
|
|
$
|
|
|
|
== Kugelwellen
|
|
|
|
Wir betrachten Kugelkoordinaten.
|
|
|
|
Betrachte eine Loesung
|
|
$
|
|
psi (r, theta, phi, t) = psi (r, t) \
|
|
dot.double(psi) = c^2 arrow(nabla) ^2 psi \
|
|
arrow(nabla) ^2 psi , space "fuer kugelsymmetrisen Fall" \
|
|
arrow(nabla) ^2 psi = 1/r diff / (diff r^2 ) (r psi) \
|
|
==> dot.double(psi)= c^2 1/r diff / (diff r^2 ) (r psi) \
|
|
diff / (diff t^2 ) (r psi) = c^2 diff / (diff r^2 ) (r psi) ==> psi (r, t) = cases(
|
|
1/r f (r - c t) \, space "auslaufen" , 1/r f(r + c t) \, space ""
|
|
)\
|
|
$
|
|
|
|
== Zylinderwellen
|
|
|
|
$
|
|
psi (rho, t) = A 1/sqrt(rho) e ^(i (k s +- c t)) \
|
|
dot.double(psi ) = e ^2 r 1/rho diff / (diff rho) (rho (diff psi) / (diff rho) ) \, space "loesung durch Besselfunktion"
|
|
$
|
|
|
|
Energiedichte
|
|
$
|
|
I prop abs(psi)^2 \
|
|
abs(psi)^2 prop 1/r^2 \, space "Energiesatz" \
|
|
I prop E^2
|
|
$
|
|
|
|
= Stehende Welle
|
|
|
|
Nur bestimmte Frequenzen erlauben fuer eine stehende Welle.
|
|
|
|
#figure(
|
|
image("typst-assets/drawing-2025-11-05-11-18-39.rnote.svg"),
|
|
)
|
|
|
|
$
|
|
psi (x, t) = A_0 sin ( - k x - omega t) + A_(r) sin (k x - omega t)
|
|
$
|
|
Was ist die Randbedinungen bei $x = 0$?
|
|
|
|
$
|
|
psi (x = 0, t) = - A_0 sin (omega t) - A_(r) sin (omega t) = ^(!) 0 \
|
|
==> A_(0) = - A_(r) = A \, space "Vorzeichenwechsel der Amplitude oder einen Phasensprung" \
|
|
psi (x, t) = A [sin ( - k x - omega t ) + sin ( - k x + omega t)] \
|
|
sin alpha + sin beta = 2 sin ((alpha + beta)/2) cos ((alpha - beta)/2) \
|
|
==> psi (x, t) = - 2 A sin (k x) cos (omega t) ==> "zeitliche und raeumliche Abhaengigkeit werden separiert".
|
|
$
|
|
|
|
= Resonator
|
|
|
|
Ein Resonator wird erzeugt, wenn zwei Waende gegenuebergestellt werden. Das heisst es gibt Randbedinungen an beiden Enden.
|
|
|
|
Eigenwertproblem
|
|
$
|
|
L = n lambda/2 \, space n in NN \
|
|
lambda_(n) = (2 L ) / ( n) \, space k_(n) L = n pi \, space c = lambda nu = nu (2 L) / (n) \
|
|
==> Delta y = (c) / (2 L).
|
|
$
|
|
Falls ein Ende offen ist, dann
|
|
$
|
|
L = (2 n + 1) lambda/4.
|
|
$
|
|
|
|
$
|
|
psi (x, t) = u (x) f (t) \
|
|
u'' + k^2 u = 0.
|
|
$
|
|
|
|
= Schwingung einer rechteckigen Membran
|
|
|
|
Die Kantenlaengen sind $a, b$. Es ergibt sich
|
|
$
|
|
arrow(nabla) ^2 u = - k ^2 u \
|
|
u_(n, m) = u_0 sin ((n pi x) / (a)) sin ((m pi y)/b)) \, space n, m in NN \
|
|
==> k ^2 _(n, m) = pi^2 (n^2 /a^2 + m^2 /b^2 ) \
|
|
omega ^2 _(n, m) = c^2 pi^2 (n^2 /a^2 + m^2 /b^2 ) ==> "Raumfrequenzen"
|
|
$
|
|
|
|
= Schallwellen
|
|
|
|
Starten mit der idealen Gasgleichung. Es schwingt der Druck
|
|
$
|
|
p (x, t) = p + tilde(p) (x, t) \
|
|
rho (x, t) = rho_0 + tilde(rho) (x, t)
|
|
$
|
|
und die Auslenkung mit der Geschwindigkeit
|
|
$
|
|
xi (x, t) \
|
|
v (x, t) = dot(xi).
|
|
$
|
|
|
|
$
|
|
A Delta x rho (diff v) / (diff t) = ^("Taylor") - A (diff p) / (diff x) Delta x \
|
|
(diff v) / (diff t) = - 1/rho (diff p) / (diff x)
|
|
$
|