Files
university/S2/AnaMech/other/Hahn_AM_9A5.py
2025-06-18 09:29:21 +02:00

137 lines
3.9 KiB
Python

# Blatt 9 Aufgabe 5
import numpy as np
import matplotlib.pyplot as plt
# Const
m1 = 1.0 # kg
m2 = 1.0 # kg
l = 1.0 # m
g = 9.81 # m/s^2
# Params
T = 30.0#s
dt = 1e-4 # Timestep
dt2 = 1e-5 # Timestep 2 (very long times)
# Initial conditions
theta1_0 = np.pi / 2
theta2_0 = np.pi
omega1_0 = 0.0
omega2_0 = 0.0
def a(theta, omega):
# Unpack the params
theta1, theta2 = theta
omega1, omega2 = omega
delta = theta1 - theta2
# Represent the equation in terms of M and Q
# L, m1, m2 not used for the matrix equation ??
# Do I need to use the result from task a) ?
M = np.array([
[2, np.cos(delta)],
[np.cos(delta), 1]
])
Q = np.array([
-omega2**2 * np.sin(delta) - 2 * g * np.sin(theta1),
omega1**2 * np.sin(delta) - g * np.sin(theta2)
])
# TODO: better method?
return np.linalg.solve(M, Q) # Return the acc in a theta double dot vector
# Run the main simulation
def run_simulation(theta0, omega0, dt):
# Setup state arrays
times = np.arange(0, T, dt)
theta = np.zeros((len(times), 2))
omega = np.zeros((len(times), 2))
energy = np.zeros(len(times))
# Initialize
theta[0] = theta0
omega[0] = omega0
acc = a(theta[0], omega[0])
print(acc)
# Iterate
for i in range(1, len(times)):
# VV-step
theta[i] = theta[i-1] + omega[i-1] * dt + 0.5 * acc * dt**2
a_new = a(theta[i], omega[i-1])
omega[i] = omega[i-1] + 0.5 * (acc + a_new) * dt
acc = a_new
# Energy
theta1, theta2 = theta[i]
omega1, omega2 = omega[i]
E_kin = 0.5 * m1 * (l * omega1)**2 + 0.5 * m2 * (
(l * omega1)**2 + (l * omega2)**2 +
2 * l**2 * omega1 * omega2 * np.cos(theta1 - theta2)
)
E_pot = - (m1 + m2) * g * l * np.cos(theta1) - m2 * g * l * np.cos(theta2)
# Save the total energy
energy[i] = E_kin + E_pot
# Return timeline
return times, theta, omega, energy
# Start simulation
theta0 = [theta1_0, theta2_0]
omega0 = [omega1_0, omega2_0]
times, theta, _, energy = run_simulation(theta0, omega0, dt)
theta0 = [theta1_0 + 10 ** -7, theta2_0]
omega0 = [omega1_0, omega2_0]
_, theta2, _, _ = run_simulation(theta0, omega0, dt)
theta0 = [theta1_0, theta2_0]
omega0 = [omega1_0, omega2_0]
times3, theta3, _, energy3 = run_simulation(theta0, omega0, dt2) # Smaller timestep
# Quick plotting
# Energy
plt.figure(figsize=(12, 6))
plt.plot(times, energy, label='Total energy', color='blue')
plt.plot(times3, energy3, label='Total energy smaller dt', color='blue', linestyle="--")
plt.xlabel('Time [s]')
plt.ylabel('Energy [J]')
plt.title('Total energy of the double pendulum')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.savefig("double_energy.svg")
# Angles
plt.figure(figsize=(12, 6))
# Reduce angles
theta_mod = (theta + np.pi) % (2 * np.pi) - np.pi
theta2_mod = (theta2 + np.pi) % (2 * np.pi) - np.pi
# Plot with module (less information)
#plt.figure(figsize=(12, 6))
#plt.plot(times, theta_mod[:, 0], label=r'$\theta_1(t)$', color='red')
#plt.plot(times, theta_mod[:, 1], label=r'$\theta_2(t)$', color='green')
#plt.plot(times, theta2_mod[:, 0], label=r'$\theta_1(t)$ (small change)', color='blue')
#plt.plot(times, theta2_mod[:, 1], label=r'$\theta_2(t)$ (small change)', color='gold')
plt.plot(times, theta[:, 0] , label=r'$\theta_1(t)$', color='red')
plt.plot(times, theta[:, 1] , label=r'$\theta_2(t)$', color='green')
plt.plot(times3, theta3[:, 0] , label=r'$\theta_1(t)$ smaller dt', color='red', linestyle="--")
plt.plot(times3, theta3[:, 1] , label=r'$\theta_2(t)$ smaller dt', color='green', linestyle="--")
plt.plot(times, theta2[:, 0] , label=r'$\theta_1(t)$ changed', color='blue')
plt.plot(times, theta2[:, 1] , label=r'$\theta_2(t)$ changed', color='yellow')
plt.xlabel('Time [s]')
plt.ylabel('Angle [rad]')
plt.title('Trajectories of both pendulums')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig("double_angles.svg")