Files
university/S2/AnaMech/VL/AnMeVL11.typ
2025-06-11 20:52:38 +02:00

244 lines
7.4 KiB
Typst

// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 11,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
E: 26.05.2025
= Wiederholung
Die Hoersaaluebung am 30.5. findet statt.
Naechste Vorlesung VL12 werden die Erhaltungssaetze in Lagrange I und II diskutiert.
Die letzten HA beinhalten nicht alle Themen der Klausur.
Es wird mehr Bonuspunkt geben.
In Lagrange I wird mehr geloest als benoetigt wird.
= Mechanische Systeme mit Zwangsbedingungen
Einmal mit N MP in 3D. Hier gibt es dann R ZB der Form
$
g_(alpha) = (arrow(x), t) = 0 , space alpha = 1, ..., R , space arrow(x) in RR^(3 N) .
$
Die BWGL in Lagrange I lauten dann
$
m_(n) dot.double(x)_(n) = F_(n) + sum_(alpha = 1)^(R) lambda_(alpha) arrow(nabla) g_(alpha) (arrow(x), t).
$
Hier sind dann noch 3N Gleichungen zu bestimmen und die R $lambda$ mit dem $arrow(x)$.
Die Zahl der unabhaengigen Koordinaten ist
$
f = 3 N - R.
$
Dieses Problem mit Zwangsbedingungen wird als ein Problem mit Nebenbedingungen bezeichnet.
= Generalisierte Koordinaten
Die Generaliserten Koordinaten haben die Form und Eigenschaft
$
q_(k), space k = 1,...f , space x_(n) = x_(n) (q, t), \
q = {q_1, q_2, ..., q_(f) }.
$
Es gilt dann fuer alle Werte von $q_(k) $ und fuer alle Zeiten
$
g_(alpha) (x(q_1, ...,q_(f) ), t) = 0.
$
#example[
Fuer einen MP auf einer Kugeloberflaeche gilt
$
x_(1) ^2 + y_(1) ^2 + z_(1) ^2 - R^2 = 0.
$
Hier gibt es dann die generaliserten Koordinaten
$
theta "und" phi.
$
]
#example[
Das Doppelpendel.
Hier ist eine Skizze des Pendels in kartesischen Koordinaten.
Wir sind in der Ebene $==>$ Es gibt 4 kartesischen Koordinaten..
Die Zwangsbedingungen sind dann
$
x_(1) ^2 + y_(1) ^2- l^2 = 0 , space abs(arrow(r_(1) ))= l_(1) \
(x_(1) - x_(2) )^2 + (y_(1) - y_(2) )^2 - l_(2) ^2 = 0 , space abs(arrow(r)_(1) - arrow(r)_(2) ) = l_(2).
$
Die Generalisierten Koordinaten sind dann die Winkel
$
phi_(1) "und" phi_(2)
$
mit den Trafos
$
x_(1) = l_(1) sin phi_(1) \
y_(1) = - l_(1) cos phi_(1) \
x_(2) = x_(1) + l_(2) sin phi_(2) \
y_(2) = - l_(1) cos phi_(1) - l_(2) cos phi_(2).
$
]
= Elimieren der Zwangskraefte
Es gibt hier $f$ BWGL fuer $q_(k) $.
Lagrange II folgt
$
dif / (dif t) (partial L) / (partial dot(q)_(k) ) - (partial L) / (partial q_(k) ) = 0 , space L = T - V.
$
Als Ansatz gilt dass die $g_(alpha) $ nicht varrieren bei Varriation von $q_k $!
Es gilt so
$
forall q_(k): (partial g_(alpha) ) / (partial q_(k) ) = 0 =>^("Kettenregel") sum_(n = 1)^(3 N) (partial g_(alpha) ) / (partial x_(n) ) (partial x_(n) ) / (partial q_(k) ) = 0 space forall k = 1, ... ,f.
$
Fixiere $q_(k) $ dann multipliziere alle 3N Gleichungen mit $(partial x_(n) ) / (partial q_(k) ) $ und dann bilde die Summe
ueber alle 3N Lagrange I Gleichungen.
Es gibt hier $f$ Moeglichkeiten $==>$ $f$ Gleichungen.
Dadurch folgt
$
sum_(n) m_(n) dot.double(x)_(n) (partial x_(n) ) / (partial q_(k) ) = sum _(n) F_(n) (partial x_(n) ) / (partial q_(k) ) + underbrace( sum _(alpha) lambda_(alpha) sum _(n) (partial g_(alpha) ) / (partial x_(n) ) (partial x_(n) ) / (partial q_(k) ), = 0).
$
So entstehen $f$ Gleichungen.
Beispiel fuer die Notation
$
h (q) &= g (r (q)) \
&= g (f (q_1 ), ..., f_(R) (q_(1) ) ).
$
= Generaliserte Geschwindigkeiten
Es gilt fuer die Geschwindigkeiten
$
dot(q)_(k) = (dif q_(k) ) / (dif t) , space k = 1, ..., f \
x_(n) = x_(n) (q,t) => ^(?) dot(x)_(n) = dot(x)_(n) (q, dot(q), t) \
dot(x)_(n) = dif / (dif t) x_(n) (q,t) = sum_(k = 1)^(f) (partial x_(n) ) / (partial q_(k) ) dot(q)_(k) + (partial x_(n) ) / (partial t)
=> (partial dot(x)_(n) ) / (partial dot(q)_(k) ) = (partial x_(n) ) / (partial q_(k) ).
$
Erinnerung 1MP
$
T = sum_(i=1)^(3) m/2 dot(x)_(i) ^2 = sum_(j, k = 1)^(3) m/2 g_(i k) dot(q)_(j) dot(q)_(k) , space g_(j k) = arrow(g)_(j) * arrow(g)_(k).
$
Hier folgt dann
$
T &= sum_(i=1)^(3 N) m_(n) /2 dot(x)_(n) ^2 = sum_(i=1)^(3 N) m_(n) /2 (sum_(i=1)^(f) (partial x_(n) ) / (partial q_(k) ) + (partial x_(n) ) / (partial t) ) (sum_(i=1)^(f) (partial x_(n) ) / (partial q_(j) ) dot(q)_(j) + (partial x_(n) ) / (partial t) ) \
&= sum_(k, j = 1)^(f) m_(k j) dot(q)_(k) dot(q)_(j) + underbrace(sum_(k)^(f) b_(k) (q,t) dot(q)_(k) + c (q,t), "nur wenn" (partial x_(n) ) / (partial t) != 0).
$
Hier steht dann insgesamt
$
sum_(k, j) sum_(n) (m_(n) /2 (partial x_(n) ) / (partial q_(k) ) (partial x_(n) ) / (partial q_(j) ) )dot(q)_(k) dot(q)_(j).
$
Ferner gilt
$
g_(alpha) (arrow(x), t)= 0 \
=> x_(n) = x_(n) (q,t).
$
= Partielle Ableitungen von der kinetischen Energie
Schreibe
$
T = sum _(n) m_(n) /2 dot(x)_(n) ^2 = T (q, dot(q), t) \
(partial T) / (partial q_(k) ) = sum _(n) m_(n) dot(x)_(n) (partial dot(x)_(n) ) / (partial q_(k) ).
$
Betrachte nun
$
(partial T) / (partial dot(q)_(k) ) = sum _(n) m_(n) dot(x)_(n) (partial dot(x)_(n) ) / (partial dot(q)_(k) ) = sum _(n) m_(n) dot(x)_(n) (partial x_(n) ) / (partial q_(k) ) \
$
Nun die totale Zeitableitung
$
dif / (dif t) (partial T) / (partial dot(q)_(k) ) = sum_n m_(n) dot.double(x)_(n) (partial x_(n) ) / (partial q_(k) ) + sum _(n) m_(n) dot(x)_(n) underbrace(dif / (dif t)(partial x_(n) ) / (partial q_(k) ), = (partial dot(x)_(n) ) / (partial q_(k) ) )
$
Der Faktor $1/2$ verschwindet hier durch die Kettenregel.
Zusammen ergibt das dann
$
dif / (dif t) (partial T) / (partial dot(q)_(k) ) - (partial T) / (partial q_(k) ) = sum _(n) m_(n) dot.double(x)_(n) + underbrace(sum _(n) m_(n) dot(x)_(n) (partial dot(x)_(n) ) / (partial q_(k) ) - sum _(n) dot(x)_(n) (partial dot(x)_(n) ) / (partial q_(k) ), = 0) \
= sum _(n) F_(n) (partial x_(n) ) / (partial q_(k) ) , space k = 1, ..., f.
$
#definition[
Generalisierte Kraefte sind gegeben durch
$
Q_(k) = sum_(i=1)^(3 N) F_(n) (partial x_(n) ) / (partial q_(k) ) \
=> dif / (dif t) (partial T) / (partial dot(q)_(k) ) - (partial T) / (partial q_(k) ) = Q_(k) , space k = 1,...,f.
$
]
Es gilt fuer konservative Kraefte mit $L = L (q, dot(q), t)$
$
F_(n) = - (partial V) / (partial x_(n) ) => Q_(k) = sum _(n) F_(n) (partial x_(n) ) / (partial q_(k) ) = - sum _(n) (partial V) / (partial x_(n) ) (partial x_(n) ) / (partial q_(k) ) = - (partial V (q, t)) / (partial q_(k) ) \
dif / (dif t) (partial (T-V)) / (partial dot(q)_(k) ) - (partial (T-V)) / (partial q_(k) ) = 0 \
=> dif / (dif t) (partial L) / (partial dot(q)_(k) ) - (partial L) / (partial q_(k) ) = 0 , space 1, ..., f.
$
Die Grundaufgabe ist herrauszufinden welche Aussagen ueber Lagrangefunktionen gemacht werden koenne.
#example[
MP auf einer rotierenden Stange.
Wir geben vor
$
arrow(omega) = omega arrow(e)_(z) \
=> phi = omega t \
f = 2 -1 = 1 \
$
Waehle generalisierte Koordinaten
$
r = r (t) \
x = x (r, t) = r cos (omega t) \
y = y (r, t) = r sin (omega t)
$
Fuer die Lagrangefunktion ergib sich
$
V &= 0 => L = T (r, dot(r), t) \
T &= m/2 (dot(x)^2 + dot(y)^2 + dot(z)^2 ) = m/2 (dot(r)^2 + omega^2 r^2 ) \
&= m/2 (dot(r)^2 + dot(phi)^2 r^2 ).
$
Dann bilde die Ableitungen
$
(partial L) / (partial dot(r)) = m dot(r) \
(partial L) / (partial r) = omega ^2 m r \
=> m dot.double(r) - omega^2 m r = 0.
$
Dadurch folgt fuer die Loesung
$
r (t) = a e ^(omega t) + b e ^(- omega t).
$
]