mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
week 25 of the year
This commit is contained in:
29
S2/DiffII/VL/DiIIVL14.typ
Normal file
29
S2/DiffII/VL/DiIIVL14.typ
Normal file
@@ -0,0 +1,29 @@
|
||||
// Main VL template
|
||||
#import "../preamble.typ": *
|
||||
|
||||
// Fix theorems to be shown the right way in this document
|
||||
#import "@preview/ctheorems:1.1.3": *
|
||||
#show: thmrules
|
||||
|
||||
// Main settings call
|
||||
#show: conf.with(
|
||||
// May add more flags here in the future
|
||||
num: 5,
|
||||
type: 0, // 0 normal, 1 exercise
|
||||
date: datetime.today().display(),
|
||||
//date: datetime(
|
||||
// year: 2025,
|
||||
// month: 5,
|
||||
// day: 1,
|
||||
//).display(),
|
||||
)
|
||||
|
||||
= Uebersicht
|
||||
|
||||
#theorem[
|
||||
Sei $U subset RR^n times RR^n $ offen, $(a,b) in U, f: U -> RR^n $ stetig diffbar mit $f (a,b) = 0$ und $det (partial_(y) f^(i) )_(1 <= i, j <= n) .. (a,b) != 0 $. Dann gibt es eine difbare Funnktion $g: U' -> U''$ sodass gilt
|
||||
$
|
||||
f (x,y) = 0 "fuer ein " x in U', y in U'' <=> y = g (x).
|
||||
$
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user