auto up 11:48:23 up 3:25, 2 users, load average: 0.17, 0.26, 0.17

auto up  12:53:47  up   0:02,  2 users,  load average: 0.43, 0.48, 0.21

auto up  13:49:41  up   0:58,  2 users,  load average: 0.36, 0.45, 0.51

auto up  09:41:45  up   1:27,  2 users,  load average: 0.31, 0.36, 0.36

auto up  15:54:41  up   1:28,  2 users,  load average: 2.26, 2.48, 1.96

auto up  11:46:48  up   1:36,  2 users,  load average: 0.24, 0.17, 0.20

auto up  11:49:23  up   0:19,  2 users,  load average: 0.09, 0.27, 0.37

auto up  08:23:17  up   0:01,  2 users,  load average: 0.99, 0.42, 0.16

auto up  14:35:31  up   3:21,  2 users,  load average: 1.95, 1.40, 1.40

auto up  11:42:06  up   1:56,  2 users,  load average: 0.03, 0.13, 0.17

auto up  09:02:45  up   0:01,  2 users,  load average: 3.05, 1.13, 0.42
This commit is contained in:
2025-11-14 11:48:23 +01:00
parent 9b1ac6747d
commit b9d1194f26
17 changed files with 1199 additions and 1 deletions

120
S3/ExPhyIII/VL/ExIIIVL5.typ Normal file
View File

@@ -0,0 +1,120 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
Dispersion
$
omega &= c k \
omega &= c (k ) k.
$
Die Geschwindigkeit aus der WEllengleichung wird Phasengeschwindigkeit genannt.
Femtosekundenlaser durch Inteferenz von monochromatischem Licht. Im Vakuum gibt es keine Dispersion.
Verallgeminerung: Ausbreitung eines Pules
$
psi (x, t) &= integral_(- oo)^(oo) underbrace(A (k) e ^(i (k x - omega (k)t)), "Darstellung im Fourierraum") dif k \
omega (k) &approx omega (k_0 ) + (k - k_0 ) (diff omega) / (diff k) (k_0 ) \
psi (x, t) &= integral_(- oo)^(oo) dif k A (k) e ^( i (k_0 x - omega (k_0 )t) - (k - k_0 )(diff omega) / (diff t) t) \
&= underbrace(e ^( i (k_0 x - omega ( k_0) t )), "monochromatische Welle bewegt sich mit" c_(p) ) integral_(- oo)^(oo) dif k A (k) e ^( i [(k - k_0 )(x - (diff omega) / (diff k) t)]) \
c &= (diff omega) / (diff k) \
c_(p) &= omega_0 /k_0.
$
Dispersionsrelation mit nicht konstantem $c$
$
omega &= c (k) k \
c^2 &= [underbrace(g/h, "grosse Welle") + underbrace((sigma k) / (rho), "kleine Welle")] tan (k h) \
c &= sqrt(T/rho),
$
wobei $h$ die Wassertiefe und $sigma$ die Oberflaechenspannung ist.
Wo sind die Wellenzahlen gleich gross
$
g/h &= (Delta k_(c)) / (rho) \
==> lambda_(c) &= 2 pi sqrt(sigma/(rho g)) \, space O ("cm").
$
In der zum Beispiel Nordsee
$
"fuer" lambda >> lambda_(c) \, space k << k_(c) \
"fuer" h k << 1 \
==> c^2 approx g h \, space k := "const".
$
In der Tiefsee
$
h k >> 1 \
c = sqrt(g/k) \, space omega = c k = sqrt(g k) \
c_(g) = (diff omega) / (diff k) = 1/2 sqrt(g/k)= 1/2 c_(p).
$
#theorem[
Navier-Stokes Gleichung
$
rho (partial _(t) arrow(v) + arrow(v) * arrow(nabla) arrow(v)) = rho arrow(g) - arrow(nabla) p.
$
]
= Von der Maxwellgleichung zur Wellengleichung
Faradaysche und Amperesche Gesetz
$
arrow(nabla) times arrow(E) = - (diff arrow(B)) / (diff t) \, space arrow(nabla) times arrow(B) = epsilon_0 mu_0 (diff arrow(E)) / (diff t) \
underbrace(arrow(nabla) times arrow(nabla) times arrow(E), = arrow(nabla) (underbrace(arrow(nabla) * arrow(E), = 0\, "da" rho = 0))- arrow(nabla) ^2 arrow(E)) = arrow(nabla) times (- (diff arrow(B)) / (diff t) ) = - diff / (diff t) ( arrow(nabla) times arrow(B))= - epsilon_0 mu_0 (diff ^2 arrow(E)) / (diff t^2 ) \
==> arrow(nabla) ^2 arrow(E) - epsilon_0 mu_0 (diff ^2 arrow(E)) / (diff t^2 ) = 0 \
arrow(B) (arrow(r), t) "analog" arrow(nabla) ^2 arrow(B) - epsilon_0 mu_0 (diff ^2 arrow(B)) / (diff t^2 ) = 0 \
==> c_0 = 1/sqrt(epsilon_0 mu_0 ) approx 2.9 * 10 ^(8) "m"/"s" \
arrow(nabla) ^2 phi - 1/c^2 (diff ^2 phi) / (diff t^2 ) = 0 .. forall phi in {E_(x) , E_(y) , E_(z) , B_(x) , B_(y) , B_(z) }.
$
Spezialfall ebene Welle zum Beispiel Wellenvektor $k$ ist $k hat(z)$. Welle ist konstant in $x$ und $y$ $forall z, t$ $==>$ Ebene senkrecht auf $z$ haben konstante Phase und Amplitude
$
arrow(E) = arrow(E) (z, t) .. "aus" arrow(nabla) * arrow(E) = 0 "folgt" partial _(z) E_(z) = 0 \
==> E_(z) "const". \
arrow(E)_(0) = vec(E_(x), E_(y) , 0) \, space arrow(E) (z, t) = arrow(E)_(0) e ^(i (k z - omega t)) \
"mit" partial _(x) ^2 arrow(E) = partial _(y)^2 arrow(E)= 0 .. "wird die WG" \
partial _(z) ^2 arrow(E) - 1/c^2 partial _(t) ^2 E= 0.
$
Allgemeiner
$
arrow(E) = arrow(E)_(0) e ^(i (arrow(k)* arrow(r) - omega t)) \, space arrow(k) = vec(k_(x) , k_(y) , k_(z) ) = (2 pi)/lambda hat(k) \
arrow(nabla) ^2 arrow(E) - 1/c^2 partial _(t) ^2 arrow(E) = 0 \, space "3 WG" \
"fuer jede Komponente" psi = psi_0 e ^(i (arrow(k)* arrow(r) - omega t)) \
==> partial _(t) ^2 psi = - omega ^2 psi_0 e ^(i (arrow(k)* arrow(r) - omega)) \
arrow(nabla) ^2 psi = psi_0 (i arrow(k))^2 e^(i (arrow(k) arrow(r) - omega t)) \
==> - k^2 + omega^2 /c^2 = 0 ==> c = omega/k.
$
Das Magnetfeld der ebenen Welle. Sei
$
arrow(E) = underbrace(arrow(E)_(0) hat(x), "Polarisation") e ^(i (k z - omega t)) \
==> arrow(nabla) times arrow(E) = (diff arrow(B)) / (diff t) \, space arrow(B) = arrow(B) (arrow(r), t) \
- abs(mat( hat(x), hat(y), hat(z); partial _(x) , partial _(y) , partial _(z) ; E_(x) , 0, 0; )) = - (partial _(z) E_(x) ) hat(y) = (diff B_(y) ) / (diff t) \
(diff B_(y) ) / (diff t) = - (diff E_(x) ) / (diff z) = - i k E_0 e ^(i (k z - omega t)) \
==> B_(y) = k/omega E_0 e ^(i (k z - omega t)) = 1/c E_0 e ^(i (k z - omega t))
$
#figure(
image("typst-assets/drawing-2025-11-14-09-19-41.rnote.svg"),
)
Es folgt
$
arrow(B) = 1/c^2 (arrow(k) times arrow(E)).
$
Warum dreht sich die Reflektion um in einem Koaxialkabel?

View File

@@ -0,0 +1,94 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
== Wiederholung der Maxwellschen Gleichungen
Anschreiben der 5 Gleichungen.
Unterscheidung zwischen freien makroskopischen und atmoaren/molekuralen mikroskopischen Ladungen & Stroemen. Es gilt
$
D = epsilon_0 E + P = epsilon_(r) epsilon_0 E.
$
Es gilt
$
arrow(nabla) times (arrow(nabla) times arrow(E)) = arrow(nabla) (arrow(nabla) * E) - arrow(nabla) ^2 E.
$
Es ergeben sich die Wellengleichungen
$
arrow(nabla) ^2 arrow(E) = mu_0 epsilon_0 (diff ^2 arrow(E)) / (diff t^2 ) \, space arrow(nabla) ^2 arrow(E) = mu_0 epsilon_0 (diff arrow(B)) / (diff t^2 ) \, space c = 1/sqrt(mu_0 epsilon_0 ) = 2.9979 * 10^(8) "m"/"s".
$
Flouresenz von Kastaniensaft.
= Energie und Impuls elektromagnetischer Wellen
Energiedichte in der Elektrostatik
$
mu = epsilon/v = (epsilon_0 E^2 ) / (2) + 1/ (2 mu_0 ) B^2
$
fuer eine ebene Welle wissen wir, dass
$
B = E/c ==> B^2 = epsilon_0 m_0 E^2 ==> mu = epsilon_0 E^2.
$
Zeitliche Anederung
$
partial _(t) mu (arrow(r), t) &= epsilon_0 arrow(E) * dot(arrow(E) )+ 1/mu_0 arrow(B)*dot(arrow(B)) \
epsilon_0 dot(arrow(E)) &= 1/mu_0 arrow(nabla) times arrow(B) - arrow(j) \
==> ^("MG (III)") dot(arrow(B)) &= - arrow(nabla) times arrow(E) \
==> partial _(t) mu &= 1/mu_0 arrow(E)* (arrow(nabla) times arrow(B)) - arrow(E) * arrow(j) - 1/mu_0 arrow(B) * (arrow(nabla) times arrow(E)) \
partial _(t) mu &= - 1/mu_0 arrow(nabla) * (arrow(E)times arrow(B)) - arrow(E) * arrow(j).
$
Betrachte mechanische Energie der Ladungsverschiebung
$
dif W = arrow(F) * dif arrow(s) = q arrow(E) * arrow(v) dif t \, space q = integral _(V) rho dif V \, space rho arrow(v) = arrow(j) \
==> (dif W) / (dif t) = integral _(V) arrow(E) * arrow(j) dif^3 arrow(r) \, space partial _(t) mu_("mech") = dot(arrow(E)) * arrow(j) \
mu_("total") = mu + mu_("mech") \, space partial _(t) mu_("total") = - 1/mu_0 arrow(nabla) * (arrow(E) times arrow(B)) .. "Poynting theorem".
$
Dies ist analog zur Kontinuitaetsgleichung mit der Ladungserhaltung
$
partial _(t) rho = - arrow(nabla) times arrow(j) \
arrow(s):= 1/mu_0 arrow(E)times arrow(B) .. "Energiedichte als Poyntingvektor".
$
Fuer die ebene Welle gilt dann
$
arrow(s) = 1/mu_0 E B hat(k) = 1/(mu_0 c)E^2 hat(k) \
arrow(s)/c = epsilon_0 E^2 hat(k) .. "hat die Einheit der Energiedichte" ==> arrow(s) = underbrace(mu, "Energiedichte") c hat(k) \, space [s] = "J"/("m"^2 "s" ) \
I = lr(angle.l arrow(s) angle.r)_(t) .. "ueber eine Periode gemittelt" \
"Impulsstromdichte" arrow(s)/c.
$
In der Photonenoptik als Funfact (Einschub) fuer Lichtteilchen und Photonen
$
E^2 = m^2 c^(4) + p^2 c^2 ==> ^(m = 0) p = E/c.
$
Eine ebene Welle wird an einer Flaeche reflektiert. Nun interessieren wir und fuer den Strahlungsdruck $P_("rad") $ und fuer die Strahlungskraft $F_("rad") $
$
arrow(F)= (dif arrow(p)) / (dif t) \, space arrow(F)_("rad") = - abs(arrow(s))/c A (hat(e)_(1) - hat(e)_(0) ) \, space P_("rad") = lr(angle.l abs(arrow(s))/c angle.r) = I/c.
$
Kraft eines Laserstrahls mit Leistung $W$
$
F ["N"] = (P ["W"]) / (3 * 10 ^(8) ) = 3.3 * 10^(- 12) P ["mW"].
$
Ein Laserpointer hat $W approx 1"mW"$. Es geht also eine Kraft von 3 Piconewton raus.
Experiment der Lichtmuehle.

102
S3/ExPhyIII/VL/ExIIIVL7.typ Normal file
View File

@@ -0,0 +1,102 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
== Maxwellgleichungen in Materie
Fuer $arrow(E) "und" arrow(B)$ Felder ist die Idee die Aufteilung der Ladungin freie und in Materie gebundene Ladung. Es gilt
$
arrow(nabla) * arrow(E) = (rho) / (epsilon_0 ) = (rho_(f) + rho_(g) ) / (epsilon_0 ) \
arrow(nabla) * arrow(E) = 1/epsilon_0 (rho_(f) - arrow(nabla) *arrow(p)) \
arrow(nabla) * (epsilon_0 arrow(E) + arrow(P)) = rho_(f) \
arrow(nabla) * arrow(D) = phi_(f) \
arrow(P) = underbrace(n, "Dichte") .. underbrace(arrow(p), "Dipole") .. "ist die Polarisation".
$
Es gilt weiterhin
$
arrow(nabla) times (arrow(B)/mu_0 - arrow(M)) = arrow(j)_(f) \
arrow(nabla) times arrow(H).
$
== Zeitlich veraenderliche Felder
Vom Ampereschen Gesetz auf das Maxwellsche Gesetz
$
arrow(nabla) times arrow(B) = mu_0 (arrow(j) + epsilon_0 (diff arrow(E)) / (diff t) ) = mu_0 (arrow(j)_(f) + arrow(j)_(g) + arrow(j)_(g) + epsilon_0 (diff arrow(E)) / (diff t) ).
$
Polarisatoinsstroeme sind also
$
arrow(j)_(P) = (diff arrow(P)) / (diff t).
$
Es folgt
$
arrow(nabla) times arrow(B) = mu_0 (arrow(j)_(f) + (diff (arrow(P) + epsilon_0 arrow(E))) / (diff t) + arrow(nabla) times arrow(M)) \
arrow(nabla) times ((arrow(B)) / (mu_0 ) - arrow(M)) = arrow(j)_(f) + (diff arrow(D)) / (diff t) \
arrow(nabla) times arrow(H) = arrow(j)_(f) + partial _(t) arrow(D).
$
Also fuer die Maxwellgleichungen
$
arrow(nabla) * arrow(D) &= rho_(f) \
arrow(nabla) * arrow(B) &= 0 \
arrow(nabla) times arrow(E) &= - partial _(t) arrow(B)\
arrow(nabla) times arrow(H) &= arrow(j)_(f) + partial _(t) arrow(D) \
arrow(D) &= epsilon_(r) epsilon_0 arrow(E) .. "(wenn" arrow(P) prop arrow(E)) .. "isotrop" \
arrow(H) &= 1/ (mu_(r) mu_0 ) arrow(B) .. "linear".
$
Ohne Stroeme ergibt sich dann
$
arrow(nabla) * arrow(D) = 0 \
arrow(nabla) *arrow(B) = 0 \
arrow(nabla) times arrow(E) = - partial _(t) arrow(B) \
arrow(nabla) times arrow(H) = partial _(t) arrow(D).
$
Fuer $epsilon (arrow(r)) "und" mu (arrow(r)) "const."$ betrachte
$
arrow(nabla) * arrow(E) = 0 \
arrow(nabla) *arrow(B) = 0 \
arrow(nabla) times arrow(E) = - partial _(t) arrow(B) \
arrow(nabla) times arrow(B) = mu_(r) mu_(0) epsilon_(r) epsilon_0 partial _(t) arrow(E)\
==> c = c_0 /n "mit" n = sqrt(epsilon_(r) mu_(r) ).
$
In der Optik ist $n$ als Brechungsindex wichtig auch wenn $n$ nicht konstant ist
$
n = n (arrow(r)) approx sqrt(epsilon (arrow(r))) \, space "da" mu_(r) approx 1.
$
Lichtausbreitung im Dielektrikum mit $rho_(f) = 0 "und" arrow(j)_(f) = 0$. Oft ist
$n (arrow(r)) "abschnittsweise konstant."
$
Dadurch ist dann die Loesung wieder trivial auf den einzelnen Abschnitten.
= Herleitung der Wellengleichung in nicht homogenen Materialien
Es gilt
$
arrow(nabla) times (arrow(nabla) times arrow(E)) = - mu_0 (arrow(nabla) times partial _(t) arrow(H) ) = - mu_0 partial _(t) (arrow(nabla) times arrow(H)) = ^("IV") - mu_0 epsilon_0 n^2 partial _(t) ^2 arrow(E) \
arrow(nabla) times (arrow(nabla) times arrow(E)) = arrow(nabla) (arrow(nabla) * arrow(E )) - arrow(nabla) ^2 arrow(E) = - mu_0 epsilon_0 n^2 (arrow(r)) partial _(t) ^2 arrow(E) \
arrow(nabla) * arrow(D) = 0 = epsilon_0 arrow(nabla) (n^2 *arrow(E)) = epsilon_0 [arrow(nabla) (n^2 ) * arrow(E) + n^2 (arrow(nabla) * arrow(E))] \
==> arrow(nabla) * arrow(E) = - 1/n^2 (arrow(nabla) n^2 * arrow(E) ).
$
Es folgt dann fuer die Wellengleichung
$
arrow(nabla) ^2 arrow(E) + arrow(nabla) [1/(n (arrow(r))^2 ) (arrow(nabla) n^2 ) * arrow(E)] - epsilon_0 mu_0 n^2 (arrow(r)) (diff ^2 arrow(E)) / (diff t^2 ) = 0.
$

175
S3/ExPhyIII/VL/ExIIIVL8.typ Normal file
View File

@@ -0,0 +1,175 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
== Reflexion und Brechung
Wechselstroeme und das Zeigerdiagramm
$
I (t) = I_0 cos [omega t + phi_(I) ] \
U (t) = U_0 cos [ omega t + phi _(U) ] \
Z = a + i b = abs(z) exp(i phi).
$
Wiederholung von Kombinantion von Wechselstromwiederstaenden und deren Impedanz
$
abs(Z) = sqrt(R^2 + (omega L - 1/ (omega C))^2 ) \
tan phi = (omega L - 1/(omega C)) / (R) = (Im Z) / (Re Z).
$
Es gilt
$
(diff V) / (diff x) = - ((diff L) / (diff x) )(diff I) / (diff t) \, space (diff I) / (diff x) = - ((diff C) / (diff x) )(diff V) / (diff t) \
(diff ^2 V) / (diff t^2 ) = - 1/C_0 diff / (diff x) (diff I) / (diff t) = - 1/C_0 diff / (diff x) (- 1/L_0 (diff V) / (diff x) )= 1 / (L_0 C_0 )(diff ^2 V) / (diff x^2 ) \, space c = 1/sqrt(L_0 C_0 ) \
partial _(x) I = - C_0 partial _(t) V ==> I_(+) = I_(0 +) e^(i (k x - omega t)) \, space V_(+) = V_(0 +) e^(i (k x - omega t)) \
I_(0 +) i k = - C_0 (i omega) V_(0 +) \
==> (V_(0 +) ) / (I _(0 +) ) = k/omega 1/C_0 = 1/c 1/C_0 = sqrt(L_0 C_0 )1/C_0 = sqrt((L_0 ) / (C_0 ) ) = Z_0.
$
= Koaxialkabel
Es gilt
$
E = 1/(2 pi epsilon_0 ) (lambda) / (r) = 1/(2 pi epsilon_0 ) (Q) / (L r) \
Delta V = V_(b) - V_(a) \
dif C = (2 pi epsilon_0 ) / (ln (R/r)) dif l \
dif L = (mu mu_0 ) / (2 pi) ln (R/r) dif l.
$
Wir haben Wellen der Form
$
I, U, arrow(E), arrow(B).
$
Fuer die Impedanz gilt dann
$
Z := sqrt(L/C) \, space [Z]= Omega.
$
Die Grenzflaeche ist dann zwischen $Z_(1) $ und $Z_2 $. Es gilt fuer die drei Stroeme
$
I = I_(1 + ) + I _(1 - ) = I _(2 + ) \
U = U_(1 + ) + U_(1 - ) = Z_(1) I _(1 + ) - Z_(1) I_(1 - ) = U _(2 + ) = Z_(2) I_(2 + ) \
==> I_(2 + ) = I _(1 + ) + I _(1 - ) \, space Z_(2) I_(2 + ) = Z_(1) I _(1 + ) + Z_(1) I _(1 - ) \
==> 1 + (I_(1 - ) ) / (I _(1 + ) ) = (I _(2 + ) ) / (I _(1 + ) ) := underbrace(t, "Transmission") = 1 + underbrace(r, "Reflexion") \
Z_(1) - Z_(2) (I_(1 - ) ) / (I _(1 + ) ) = Z_(2) (I_(2 + ) ) / (I _(1 + ) ) \
==> r = (Z_(1) - Z_(2) ) / (Z_(1) + Z_(2) ) \, space t = (2 Z_(1) ) / (Z_(1) + Z_(2) ).
$
= Dopplereffekt
Fuer Schall
$
f' = (1 +- v_(e) /c) / (1 minus.plus v_(s) /c) f_0,
$
wobei $+ $ aufeinander zu und $- $ voneinander weg ist. Auch ist $v_(e) $ die Geschwindigkeit des Empfaengers und $v_(s) $ die des Senders.
Lorentztransformation impliziert
$
f = sqrt((c +- v) / (c minus.plus v) ) f_0.
$
Fuer die Wellenlaenge $lambda$
$
lambda = c T \, space f_0 = c /T \
lambda' = (c + v_(s) ) T \, space lambda'' = (c - v_(s) ) T \
f' = c/lambda' = (c) / ((c + v_(s) )T) = c / (v + v_(s) )f_0 ==> f' = 1/(1 +- v_(s) /c) f_0.
$
Fuer den bewegten Empfaenger
$
T' = (lambda) / (c + v_(e) ) = T_0 /(1 + v_(e) /c) \
==> f'= (1 + v_(e) /c) f_0 \
f' = (1 +- v_(e) /c) / (1 minus.plus v_(s) /c) f_0.
$
Fuer Relativitaet
$
x' = gamma (x - v t) \, space y' = y \, space z' = z \, space t' = gamma (t - (x v) / (c^2 ) ) \, space gamma = (1) / (sqrt(1 - v^2 /c^2 )) \
( c Delta t - v Delta t)/N \, space f = c/lambda = (c N) / (c Delta t - v Delta t) \
N = f_0 Delta t' \, space Delta t' = Delta t = (Delta t)/gamma \
f = (c) / (c Delta t - v Delta t) f_0 (Delta t) / (gamma) = 1/ (1 - v/c) f_0 /gamma = sqrt((1 + v/c)/(1 - v/c)) f_0
$
= Brechung und Reflexion
Betrachte Wellen
$
psi_(1) = a_1 e ^(i (arrow(k)_(1) arrow(r) - omega t)) \
psi_(r) = a_(r) e^(i (arrow(k)_(r) arrow(r) - omega _(r) t))
psi_(2) = a_(2) e^(i (arrow(k)_(2) arrow(r) - omega _(2) t)).
$
Das Ziel ist die Bestimmung der Geometrie. Also $Theta_(2) , Theta_(1) "und" Theta_(r) $ und $R = abs((a_(r) ) / (a_(1) ) )^2 \, space R = R (n_1, n_2, Theta_(1) )$ sowie $T = abs(a_2 /a_1 )^2 \, space T = T (n_1, n_2, Theta_(1) ) $. Es gilt dabei $R = abs(r)^2 \, space T = abs(t)^2 $.
Alles folgt aus den Randbedingungen. So ist $psi$ hier stetig und
$
arrow(nabla) psi "stetig an der Grenzflaeche" z = 0.
$
Stetigkeit von $psi$ impliziert
$
a_1 e^(i (arrow(k)_(1) arrow(r) - omega t)) + a_(r) e^(i (arrow(k)_(r) arrow(r) - omega_(r) t)) = a_(2) e^(i (arrow(k)_(2) arrow(r) - omega_(2) t)) space forall arrow(r) = vec(x, y, 0) space forall t \
==> omega := omega_(1) = omega_(r) = omega_(2).
$
Es muessen also auch die Tangentialkomponenten von $arrow(k)$ gleich sein, also gilt auch
$
k_(1) ^((x)) = k_(r) ^((x)) = k_(2) ^((x)).
$
Also
$
k_(1) ^((x)) = k n_(1) sin Theta_(1) = k n_(1) sin Theta_(r) \
==> Theta_(1) = Theta_(r) "Reflexionsgesetz".
$
Aus $k_(1) ^((x)) = k_(2) ^((x)) $ folgt
$
k n_(1) sin Theta_(1) = k_(2) n_(2) sin Theta_(2) \
==> n_1 / n_2 = (sin Theta_(2) ) / (sin Theta_(1) ).
$
Mit $k = (2 pi )/lambda$ im Vakuum. Auch
$
a_1 + a_(r) = a_(2).
$
Aus der Stetigkeit des Gradienten folgt
$
arrow(k)_(1) psi_(1) + arrow(k)_(r) psi_(r) = arrow(k)_(2) psi_(2) \
==> k n_1 a_1 sin Theta_(1) + k n_1 a_1 sin Theta_(1) = k n_2 a_2 sin Theta_2 \
==> (a_1 + a_(2) ) n_1 sin Theta_1 = a_2 n_2 sin Theta_2 "wieder der Snellius".
$
Die senkrechte Komponenente liefert
$
- k n_1 a_1 cos Theta_1 + k n_1 a_(r) cos Theta_1 = - k n_2 a_2 cos Theta_2 \
==> n_1 cos Theta_1 (a_1 - a_(r) ) = n_2 (a_1 + a_(r) )cos Theta_2 \
( 1 - a_(r) /a_(1) ) = n_2 /n_1 (cos Theta_2 )/(cos Theta_1 ) (1 + a_(r) /a_(1) ) "mit" r := a_(r) /a_(1) ==> (1 - sigma) = n_2 /n_1 (cos Theta_2 ) / (cos Theta_1 ) space "?"
$
Also
$
1 - n_2 /n_1 (cos Theta_2 ) / (cos Theta_1) = r (n_2 /n_1 (cos Theta_(2) ) / (Theta_(1) ) + 1) \
==> r = (n_2 cos Theta_1 - n_2 cos Theta_2 ) / (n_1 cos Theta_(1) + n_2 cos Theta_(2) ) \
==> t = a_(2) /a_(1) = (a_1 + a_(r) ) / (a_1 ) = 1 + r \
==> t = (2 n_1 cos Theta_1 ) / (n_1 cos Theta_1 + n_2 cos Theta_2 ).
$
Jetzt als Spezialfall den senkrechten Einfall
$
Theta_1 = 0 degree \, space r = (n_1 - n_2 ) / (n_1 + n_2 ) \
"fuer" n_1 = 1 \, space n_2 = 1.5 space ("Glas") \
==> r = (- 0.5) / (2.5) = - 0.2 \, space R := r^2 = 0.04.
$
Eine Grenzflaeche mit Normalen in zwei Medien mit Brechungsindizes $n_1 "und" n_2 $
$
Theta_1 = Theta_(c) <==> Theta_(2) = 90 degree.
$
Ist der Snellius fuer $Theta > Theta_(c) $ erfuellbar? Gibt es Verhaeltnisse fuer die der Reflexionskoeffizient $R = abs(r)^2 = 1$ sein kann?
#highlight[TODO: Totalreflexion herleiten]

View File

Binary file not shown.

View File

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 5.3 KiB