Files
university/S3/ExPhyIII/VL/ExIIIVL5.typ
Jonas Hahn b9d1194f26 auto up 11:48:23 up 3:25, 2 users, load average: 0.17, 0.26, 0.17
auto up  12:53:47  up   0:02,  2 users,  load average: 0.43, 0.48, 0.21

auto up  13:49:41  up   0:58,  2 users,  load average: 0.36, 0.45, 0.51

auto up  09:41:45  up   1:27,  2 users,  load average: 0.31, 0.36, 0.36

auto up  15:54:41  up   1:28,  2 users,  load average: 2.26, 2.48, 1.96

auto up  11:46:48  up   1:36,  2 users,  load average: 0.24, 0.17, 0.20

auto up  11:49:23  up   0:19,  2 users,  load average: 0.09, 0.27, 0.37

auto up  08:23:17  up   0:01,  2 users,  load average: 0.99, 0.42, 0.16

auto up  14:35:31  up   3:21,  2 users,  load average: 1.95, 1.40, 1.40

auto up  11:42:06  up   1:56,  2 users,  load average: 0.03, 0.13, 0.17

auto up  09:02:45  up   0:01,  2 users,  load average: 3.05, 1.13, 0.42
2025-12-24 04:57:55 +01:00

121 lines
4.9 KiB
Typst

// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
Dispersion
$
omega &= c k \
omega &= c (k ) k.
$
Die Geschwindigkeit aus der WEllengleichung wird Phasengeschwindigkeit genannt.
Femtosekundenlaser durch Inteferenz von monochromatischem Licht. Im Vakuum gibt es keine Dispersion.
Verallgeminerung: Ausbreitung eines Pules
$
psi (x, t) &= integral_(- oo)^(oo) underbrace(A (k) e ^(i (k x - omega (k)t)), "Darstellung im Fourierraum") dif k \
omega (k) &approx omega (k_0 ) + (k - k_0 ) (diff omega) / (diff k) (k_0 ) \
psi (x, t) &= integral_(- oo)^(oo) dif k A (k) e ^( i (k_0 x - omega (k_0 )t) - (k - k_0 )(diff omega) / (diff t) t) \
&= underbrace(e ^( i (k_0 x - omega ( k_0) t )), "monochromatische Welle bewegt sich mit" c_(p) ) integral_(- oo)^(oo) dif k A (k) e ^( i [(k - k_0 )(x - (diff omega) / (diff k) t)]) \
c &= (diff omega) / (diff k) \
c_(p) &= omega_0 /k_0.
$
Dispersionsrelation mit nicht konstantem $c$
$
omega &= c (k) k \
c^2 &= [underbrace(g/h, "grosse Welle") + underbrace((sigma k) / (rho), "kleine Welle")] tan (k h) \
c &= sqrt(T/rho),
$
wobei $h$ die Wassertiefe und $sigma$ die Oberflaechenspannung ist.
Wo sind die Wellenzahlen gleich gross
$
g/h &= (Delta k_(c)) / (rho) \
==> lambda_(c) &= 2 pi sqrt(sigma/(rho g)) \, space O ("cm").
$
In der zum Beispiel Nordsee
$
"fuer" lambda >> lambda_(c) \, space k << k_(c) \
"fuer" h k << 1 \
==> c^2 approx g h \, space k := "const".
$
In der Tiefsee
$
h k >> 1 \
c = sqrt(g/k) \, space omega = c k = sqrt(g k) \
c_(g) = (diff omega) / (diff k) = 1/2 sqrt(g/k)= 1/2 c_(p).
$
#theorem[
Navier-Stokes Gleichung
$
rho (partial _(t) arrow(v) + arrow(v) * arrow(nabla) arrow(v)) = rho arrow(g) - arrow(nabla) p.
$
]
= Von der Maxwellgleichung zur Wellengleichung
Faradaysche und Amperesche Gesetz
$
arrow(nabla) times arrow(E) = - (diff arrow(B)) / (diff t) \, space arrow(nabla) times arrow(B) = epsilon_0 mu_0 (diff arrow(E)) / (diff t) \
underbrace(arrow(nabla) times arrow(nabla) times arrow(E), = arrow(nabla) (underbrace(arrow(nabla) * arrow(E), = 0\, "da" rho = 0))- arrow(nabla) ^2 arrow(E)) = arrow(nabla) times (- (diff arrow(B)) / (diff t) ) = - diff / (diff t) ( arrow(nabla) times arrow(B))= - epsilon_0 mu_0 (diff ^2 arrow(E)) / (diff t^2 ) \
==> arrow(nabla) ^2 arrow(E) - epsilon_0 mu_0 (diff ^2 arrow(E)) / (diff t^2 ) = 0 \
arrow(B) (arrow(r), t) "analog" arrow(nabla) ^2 arrow(B) - epsilon_0 mu_0 (diff ^2 arrow(B)) / (diff t^2 ) = 0 \
==> c_0 = 1/sqrt(epsilon_0 mu_0 ) approx 2.9 * 10 ^(8) "m"/"s" \
arrow(nabla) ^2 phi - 1/c^2 (diff ^2 phi) / (diff t^2 ) = 0 .. forall phi in {E_(x) , E_(y) , E_(z) , B_(x) , B_(y) , B_(z) }.
$
Spezialfall ebene Welle zum Beispiel Wellenvektor $k$ ist $k hat(z)$. Welle ist konstant in $x$ und $y$ $forall z, t$ $==>$ Ebene senkrecht auf $z$ haben konstante Phase und Amplitude
$
arrow(E) = arrow(E) (z, t) .. "aus" arrow(nabla) * arrow(E) = 0 "folgt" partial _(z) E_(z) = 0 \
==> E_(z) "const". \
arrow(E)_(0) = vec(E_(x), E_(y) , 0) \, space arrow(E) (z, t) = arrow(E)_(0) e ^(i (k z - omega t)) \
"mit" partial _(x) ^2 arrow(E) = partial _(y)^2 arrow(E)= 0 .. "wird die WG" \
partial _(z) ^2 arrow(E) - 1/c^2 partial _(t) ^2 E= 0.
$
Allgemeiner
$
arrow(E) = arrow(E)_(0) e ^(i (arrow(k)* arrow(r) - omega t)) \, space arrow(k) = vec(k_(x) , k_(y) , k_(z) ) = (2 pi)/lambda hat(k) \
arrow(nabla) ^2 arrow(E) - 1/c^2 partial _(t) ^2 arrow(E) = 0 \, space "3 WG" \
"fuer jede Komponente" psi = psi_0 e ^(i (arrow(k)* arrow(r) - omega t)) \
==> partial _(t) ^2 psi = - omega ^2 psi_0 e ^(i (arrow(k)* arrow(r) - omega)) \
arrow(nabla) ^2 psi = psi_0 (i arrow(k))^2 e^(i (arrow(k) arrow(r) - omega t)) \
==> - k^2 + omega^2 /c^2 = 0 ==> c = omega/k.
$
Das Magnetfeld der ebenen Welle. Sei
$
arrow(E) = underbrace(arrow(E)_(0) hat(x), "Polarisation") e ^(i (k z - omega t)) \
==> arrow(nabla) times arrow(E) = (diff arrow(B)) / (diff t) \, space arrow(B) = arrow(B) (arrow(r), t) \
- abs(mat( hat(x), hat(y), hat(z); partial _(x) , partial _(y) , partial _(z) ; E_(x) , 0, 0; )) = - (partial _(z) E_(x) ) hat(y) = (diff B_(y) ) / (diff t) \
(diff B_(y) ) / (diff t) = - (diff E_(x) ) / (diff z) = - i k E_0 e ^(i (k z - omega t)) \
==> B_(y) = k/omega E_0 e ^(i (k z - omega t)) = 1/c E_0 e ^(i (k z - omega t))
$
#figure(
image("typst-assets/drawing-2025-11-14-09-19-41.rnote.svg"),
)
Es folgt
$
arrow(B) = 1/c^2 (arrow(k) times arrow(E)).
$
Warum dreht sich die Reflektion um in einem Koaxialkabel?