mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2025-12-31 22:34:25 -05:00
auto up 12:53:47 up 0:02, 2 users, load average: 0.43, 0.48, 0.21 auto up 13:49:41 up 0:58, 2 users, load average: 0.36, 0.45, 0.51 auto up 09:41:45 up 1:27, 2 users, load average: 0.31, 0.36, 0.36 auto up 15:54:41 up 1:28, 2 users, load average: 2.26, 2.48, 1.96 auto up 11:46:48 up 1:36, 2 users, load average: 0.24, 0.17, 0.20 auto up 11:49:23 up 0:19, 2 users, load average: 0.09, 0.27, 0.37 auto up 08:23:17 up 0:01, 2 users, load average: 0.99, 0.42, 0.16 auto up 14:35:31 up 3:21, 2 users, load average: 1.95, 1.40, 1.40 auto up 11:42:06 up 1:56, 2 users, load average: 0.03, 0.13, 0.17 auto up 09:02:45 up 0:01, 2 users, load average: 3.05, 1.13, 0.42
59 lines
1.6 KiB
Typst
59 lines
1.6 KiB
Typst
// Main VL template
|
|
#import "../preamble.typ": *
|
|
|
|
// Fix theorems to be shown the right way in this document
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
#show: thmrules
|
|
|
|
// Main settings call
|
|
#show: conf.with(
|
|
// May add more flags here in the future
|
|
num: 5,
|
|
type: 0, // 0 normal, 1 exercise
|
|
date: datetime.today().display(),
|
|
//date: datetime(
|
|
// year: 2025,
|
|
// month: 5,
|
|
// day: 1,
|
|
//).display(),
|
|
)
|
|
|
|
= Uebersicht
|
|
|
|
Wiederholung
|
|
$
|
|
E_("pot") = N/2 sum _(i != j) ( ... ) \
|
|
E_(i j) := "WW-Energie zwischen Ion" i and j \
|
|
E_(i) := "WW-Energie des Ion" i \, space E_(i) := sum _(i != j) E_(i j) \
|
|
E_("pot") = N/2 E_(i) "Summe der Ionenpole nach dem Summationsprinzip".
|
|
$
|
|
Zur Loesung einfacher Molekuele wird die LCAO-Methode genutzt um das Molekuelorbital durch eine Linearkombination zu modellieren.
|
|
|
|
Helium kann durch Kombination aus $phi_(A) "und" phio_(B) $ dargestellt werden.
|
|
|
|
Das H-atom wird dargestellt als Kombination aus $phi_(A) and phi_(B) $.
|
|
|
|
Zeitunabhaengiger Hamilton-Operator
|
|
$
|
|
- planck.reduce ^2 / (2 m ) arrow(nabla) _(e) ^2 - (e ^2 ) / (4 pi epsilon_0 ) (1/r_(A) + 1/r_(B) - 1/R ) phi = E phi.
|
|
$
|
|
Ansatz
|
|
$
|
|
psi (arrow(r), R) = c_(A) phi_(A) (arrow(r)_(A) ) + c_(B) phi_(B) (arrow(r)_(B) ) \
|
|
phi_(i) (arrow(r)) = phi_(i) (arrow(r )_(i) ) = 1/(sqrt(pi a_0 ^3 )) e ^( - r_(i) /a_0 ) \, space a_0 = "const."
|
|
$
|
|
Die gesamte Wellenfunktion ist normiert
|
|
$
|
|
integral abs(psi)^2 dif ^3 r = 1.
|
|
$
|
|
Das Ueberlappungsintegral ist gegeben durch
|
|
$
|
|
S_(A B) = R_0 integral phi_(A) ^(star ) phi_(B) dif ^3 r.
|
|
$
|
|
|
|
Das Helium Ion ist symmetrisch, also
|
|
$
|
|
H_(A A) = H_(B B) \
|
|
c_(A) = +- c_(B).
|
|
$
|