mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
58 lines
1.3 KiB
Typst
58 lines
1.3 KiB
Typst
// Main VL template
|
|
#import "../preamble.typ": *
|
|
|
|
// Fix theorems to be shown the right way in this document
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
#show: thmrules
|
|
|
|
// Main settings call
|
|
#show: conf.with(
|
|
// May add more flags here in the future
|
|
num: 5,
|
|
type: 0, // 0 normal, 1 exercise
|
|
date: datetime.today().display(),
|
|
//date: datetime(
|
|
// year: 2025,
|
|
// month: 5,
|
|
// day: 1,
|
|
//).display(),
|
|
)
|
|
|
|
= Uebersicht
|
|
|
|
= Partielle Differentialgleichungen
|
|
|
|
ODE
|
|
$
|
|
arrow(x) (t) => m (dif ^2 arrow(x)) / (dif t^2 ) = F (arrow(x), dot(arrow(x))).
|
|
$
|
|
PDE
|
|
$
|
|
(partial ^2 psi) / (partial t^2 ) = u^2 (partial ^2 psi) / (partial x^2 ) , space psi (x,t) \
|
|
(partial T) / (partial t) = D (partial ^2 T) / (partial x^2 ) , space "Fourier Gesetz" arrow(j) = kappa arrow(nabla) T.
|
|
$
|
|
Poisson-Gleichung
|
|
$
|
|
Delta phi = - (rho (arrow(x))) / (epsilon_0 ).
|
|
$
|
|
Lineare partielle DGL
|
|
$
|
|
L [phi (arrow(x))] = rho (arrow(x)) \
|
|
phi (arrow(x)) = phi_0 (arrow(x)) "auf Rand" partial Omega \
|
|
"gesucht ist die Loesung von Gebiet" Omega.
|
|
$
|
|
|
|
#example[
|
|
Poisson-Gleichung.
|
|
|
|
Fuehre eine Diffferenzdiskretisierung durch
|
|
$
|
|
phi (x,y) tilde.equiv phi (I_(x) , I_(y) ) \
|
|
Delta phi = (partial ^2 phi) / (partial x^2 ) + (partial ^2 phi) / (partial y^2 ) = (phi (i_(x) + 1 , i_(y) ) - 2 phi (i_(x) , i_() )) / ()
|
|
$
|
|
]
|
|
|
|
Doolittle Verfahren
|
|
Gauss-Elimination Verfahren
|
|
|