Files
university/S2/AnaMech/other/Hahn_AM_EX5.py
2025-04-27 19:06:22 +02:00

115 lines
3.3 KiB
Python

# # Numerische Berechnung der Trajektorien des harmonischen Oszillators
# Hilfreiche Pakete
import numpy as np
import matplotlib.pyplot as plt
import math
# Konstanten
from scipy.constants import g
# Sinnvolle Konstanten
def run_sim(gamma = 0, dt = 1e-2):
x0 = 1
v0 = 0
omega0 = 1
tmax = 20 # Max time for the algorithm to terminate
# Initial values
x_t = [x0]
x_t_exact = [x0]
v_t = [v0]
v_t_exact = [v0]
T_t = [0.5*v0*v0]
V_t = [0.5*omega0*omega0*x0*x0]
E_t = [T_t[0]+V_t[0]]
# exakter Wert der Energie:
E_exact = E_t[0]
Ediff_t = [0]
# Implementation of the Euler-Algorithm
for i in range(int(tmax // dt)):
f = v_t[-1]
x = x_t[-1] + f * dt # Calc new position
# Change this for the damped one
#v = v_t[-1] - dt * omega0 ** 2 * x_t[-1] # undamped
v = v_t[-1] + dt * ( -2 * gamma * v_t[-1] - omega0 ** 2 * x_t[-1]) # damped (general)
x_t.append(x)
v_t.append(v)
# Q: Wofuer werden die exacten Werte gebraucht wenn sich die
# exacte Energie nicht aendert?
x_exact = x0 * np.exp(-gamma * i * dt) * np.cos(omega0 * i * dt)
v_exact = -omega0 * x0 * np.exp(-gamma * i * dt) * np.sin(omega0 * i * dt)
x_t_exact.append(x_exact)
v_t_exact.append(v_exact)
# calculate the energy based on current velocity and position
T = 1/2 * v ** 2
V = 1/2 * omega0 ** 2 * x ** 2
E = T + V
T_t.append(T)
V_t.append(V)
E_t.append(E)
Ediff_t.append(E-E_exact)
# TIPP: Zum erstellen mehrerer Plots auf einmal, siehe z.B.:
# https://matplotlib.org/3.1.1/gallery/subplots_axes_and_figures/subplot.html
kwargs = {'c':'b'}
font_kwargs = {'fontsize':14}
times = np.arange(0,len(x_t))*dt
abs_max = max(x_t, key=abs)
fig,ax = plt.subplots(1,4,figsize=(18,7))
#actual plots
ax[0].plot(times,x_t,**kwargs)
ax[0].plot(times,x_t_exact,'r--', label="exakt") # add exact values to plot
ax[1].plot(x_t,v_t,**kwargs)
ax[1].plot(x_t_exact,v_t_exact,'r--') # add exact values to plot
ax[2].plot(times,T_t,label = "T")
ax[2].plot(times,V_t,label = "V")
ax[2].plot(times,E_t,label = "E = T+V")
ax[3].plot(times,Ediff_t,label = "Fehler in der Energie")
#style changes
ax[0].set_xlim(0,len(x_t)*dt)
ax[0].set_ylim(-abs_max,abs_max)
ax[0].set_xlabel("t",**font_kwargs)
ax[0].set_ylabel("$x(t)$",**font_kwargs)
ax[1].set_xlabel("$x(t)$",**font_kwargs)
ax[1].set_ylabel("$v(t)$",**font_kwargs)
ax[2].set_xlim(0,len(x_t)*dt)
ax[2].set_ylim(-abs_max,abs_max)
ax[2].set_xlabel("t",**font_kwargs)
ax[2].set_ylabel("Energies",**font_kwargs)
ax[2].set_xlim(0,len(x_t)*dt)
ax[2].set_ylim(-abs_max,abs_max)
ax[2].set_xlabel("t",**font_kwargs)
ax[2].set_ylabel("Differenz",**font_kwargs)
# Generate the legend for all subplots
plt.legend(handles=[ax[0].lines[0], ax[0].lines[1], ax[1].lines[0], ax[1].lines[1], ax[2].lines[0], ax[2].lines[1], ax[2].lines[2], ax[3].lines[0]], loc='upper right')
plt.tight_layout() # Make sure the legend doesn't cover any plot
plt.savefig(f"Hahn_gamma={gamma};dt={dt}.png")
for dt in [1e-2, 1e-3, 1e-4]:
run_sim(0, dt)
for gamma in [0.1, 1, 1.2]:
run_sim(gamma, 1e-4)