Files
university/S2/CWR/VL/CwrVL6.typ
2025-05-23 02:35:21 +02:00

58 lines
1.3 KiB
Typst

// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 5,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Uebersicht
= Partielle Differentialgleichungen
ODE
$
arrow(x) (t) => m (dif ^2 arrow(x)) / (dif t^2 ) = F (arrow(x), dot(arrow(x))).
$
PDE
$
(partial ^2 psi) / (partial t^2 ) = u^2 (partial ^2 psi) / (partial x^2 ) , space psi (x,t) \
(partial T) / (partial t) = D (partial ^2 T) / (partial x^2 ) , space "Fourier Gesetz" arrow(j) = kappa arrow(nabla) T.
$
Poisson-Gleichung
$
Delta phi = - (rho (arrow(x))) / (epsilon_0 ).
$
Lineare partielle DGL
$
L [phi (arrow(x))] = rho (arrow(x)) \
phi (arrow(x)) = phi_0 (arrow(x)) "auf Rand" partial Omega \
"gesucht ist die Loesung von Gebiet" Omega.
$
#example[
Poisson-Gleichung.
Fuehre eine Diffferenzdiskretisierung durch
$
phi (x,y) tilde.equiv phi (I_(x) , I_(y) ) \
Delta phi = (partial ^2 phi) / (partial x^2 ) + (partial ^2 phi) / (partial y^2 ) = (phi (i_(x) + 1 , i_(y) ) - 2 phi (i_(x) , i_() )) / ()
$
]
Doolittle Verfahren
Gauss-Elimination Verfahren