// Main VL template #import "../preamble.typ": * // Fix theorems to be shown the right way in this document #import "@preview/ctheorems:1.1.3": * #show: thmrules // Main settings call #show: conf.with( // May add more flags here in the future num: 12, type: 0, // 0 normal, 1 exercise date: datetime.today().display(), //date: datetime( // year: 2025, // month: 5, // day: 1, //).display(), ) E: 2.6.25 = Uebersicht + Ein Beispiel fuer Lagrange II + Erhaltungsgroessen in L I und L II + Symetrien u. Erhaltungsgroessen = Lagrange Funktion Es gilt fuer die Lagrange Funktion $ L (q_(k) dot(q)_(k), t) = T (q_(k), dot(q)_(k) , t) - V (q_(k) , t) , space k = 1, ..., f. $ Lagrange II $ dif / (dif t) (partial L) / (partial dot(q)_(k) ) - (partial L) / (partial q_(k) ) = 0 , space k = 1, ..., f. $ #example[ MP im Kegel. Es wirkt nur die Gravitationskraft. Hier gilt fuer die Koordinaten $ R = 1 => f = 2 \ rho = z tan alpha. $ Es gilt fuer eine Z.B. $ g (x, y, z) = x ^2 + y ^2 - z ^2 tan ^2 alpha = 0 \ x = r sin alpha cos phi , space theta = alpha \ y = r sin alpha sin phi \ z = r cos alpha. $ Dann waehle fuer die generalisierten Koordinaten $ q = {r, phi}. $ Das ergibt fuer die Lagrange-Funktion $ L (x,y,z,dot(x),dot(y), dot(z)) = m/2 (dot(x)^2 + dot(y)^2 + dot(z)^2 ) - m g z \ => L = m/2 (dot(r)^2 + r ^2 dot(phi)^2 sin ^2 alpha) - underbrace(m g cos alpha r, V (r)). $ Hier gibt es eine zyklische Koordinate $ (partial L) / (partial phi) = 0 => p_(phi) = (partial L) / (partial dot(phi)) = m r ^2 sin ^2 alpha dot(phi) prop L_(z) $ #highlight[TODO: berechne Drehimpuls in Kugelkoordinaten] ] = Erhaltungsgroessen in L I und L II Es gilt $ m_(n) dot.double(x)_(n) = F_(n) sum_(alpha = 1)^(R) alpha_(alpha) (partial g_(alpha) (arrow(x), t)) / (partial x_(n) ) , space n = 1, ..., 3N \ g_(alpha) (arrow(x), t) = 0 , space alpha = 1, ..., R \ => (x_(n) , lambda_(alpha) ). $ == Energieerhaltung === Lagrange I Wir betrachten Zwangskraefte $ g_(alpha) (arrow(x), t) = 0 \ arrow(Z)_(alpha) * d arrow(r) = 0. $ Wir wollen Erhaltung von mit $V = V (x_(n) )$ $ E = T + V \ (dif T) / (dif t) = dif / (dif t) sum_(n) 1/2 m_(n) dot(x)_(n) ^2 = sum _(n) m_(n) dot(x)_(n) dot.double(x)_(n) \ (dif V) / (dif t) = sum _(n) (partial_(n) V)dot(x)_(n) = - sum _(n) F_(n) dot(x)_(n) , space "Konservativ" => partial_(n) V = - F_(n). $ Nebenrechnung $ (dif g_(alpha) ) / (dif t) = sum _(n) (partial g_(alpha) ) / (partial x_(n) ) dot(x)_(n) + (partial g_(alpha) ) / (partial t) = 0. $ Das ergibt dann $ dif / (dif t) (T + V) = sum _(n) sum _(alpha) lambda_(alpha) (partial g_(alpha) ) / (partial x_(n) ) dot(x)_(n) = sum _(alpha) lambda_(alpha) (- (partial g_(alpha) ) / (partial t) ) . $ Wir erwarten die Energieerhaltung nur fuer abg. und kons. Systeme. Falls die Zwangskraefte sich also nicht mit der Zeit aendern, dann gilt die Energieerhaltung $ (partial g_(alpha) ) / (partial t) = 0 space forall alpha \ => E = T + V = "const". $ === Lagrange II Allgemeine Erhaltungsgroessen. Erinnerung fuer mechanische Groessen $ Q = Q (q, dot(q), t) \ (dif Q) / (dif t) = 0 <=> Q "erhalten". $ Wie bekommt man im Lagrangeformalismus erhaltungsgroessen + Zyklische Koordinaten $ underbrace((partial L) / (partial q_(k) ) = 0, q_(k) "zyklisch") => dif / (dif t) (partial L) / (partial dot(q)_(k) ) = 0 => p_(k) "erhalten" , space p_(k) := "gen. Impuls". $ Die Frage nach zyklischen Koordinaten darf nur gestellt werden, wenn man schon $f$ unabhaengige Koordinaten hat. Nun $ (partial g_(alpha) ) / (partial t) != 0 <=>^(!) (partial x_(n) ) / (partial t) != 0 and (partial L) / (partial t) = 0 \ (dif L) / (dif t) = sum _(k) (partial L) / (partial q_(k) ) dot(q)_(k) + sum _(k) (partial L) / (partial dot(q)_(k) ) dot.double(q)_(k) + (partial L) / (partial t) \ => dif / (dif t) (sum _(k) (partial L) / (partial dot(q)_(k) ) - L) = - (partial L) / (partial t) $. Betrachte als Nebenrechnung $ dif / (dif t) sum_(i=1)^(t) (partial L) / (partial dot(q)_(i) ) dot(q)_(i) = sum _(k) dot(q)_(k) dif / (dif t) (partial L) / (partial dot(q)_(k) ) = sum _(k) dot.double(q)_(k) (partial L) / (partial dot(q)_(k) ) =^("L II") sum _(k) (dot(q)_(k) (partial L) / (partial q_(k) ) + dot.double(q)_(k) (partial L) / (partial dot(q)_(k) ) ). $ Es gilt also $ (partial L) / (partial t) = 0 <=> sum _(k = 1) ^(f) p_(k) dot(q)_(k) - L "erhalten" $ Jetzt der Fall, dass $ (partial g_(alpha) ) / (partial t) &= 0 , space (partial L) / (partial t) = 0 \ &=> x_(n) = x_(n) (q) \ &=> T = sum _(i, i) m_(i k) (q) dot(q)_(i) dot(q)_(k) \ &=> sum_(i=1)^(f) (partial L) / (partial dot(q)_(i) ) = sum _(k) (partial T) / (partial dot(q)_(k) ) dot(q)_(k) = 2 T (q, dot(q)) \ (partial L) / (partial t) = 0 &=> V (q, t) = V (q) \ sum_(k = 1)^(f) (partial L) / (partial dot(q)_(k) ) dot(q)_(k) - L &= 2 T - (T - V) = T + V = E. $ Nun der naechste Fall, dass $ (partial L) / (partial t) != 0 => "keine Erhaltungsgroesse". $ Zuletzt $ (partial L) / (partial t) = 0 , space (partial g_(alpha) ) / (partial t) != 0 => (partial x_(n) ) / (partial t) != 0 \ => "Erhaltungsgroesse durch" #[@erh]. $ = Beispiele #example[ MP im Kegel. Hier gilt fuer die Zwangsbedingung $ (partial g_(alpha) ) / (partial t) = 0 => (partial x_(n) ) / (partial t) = 0 \ => (partial L) / (partial t) = 0 => E = T + V. $ ] #example[ Perle auf rotierendem Draht. Der Draht rotiert in der Ebene mit $ phi = omega t , space omega = "const." \ g (x, g, t) = tan ^(-1) (y/x) - omega t = phi - omega t = 0 \ => (partial g_(alpha) ) / (partial t) != 0 .. (alpha = 1). $ Es gilt fuer die Trafo $ x = r cos (omega t) \ y = r sin (omega t) \ => x_(n) = x_(n) (q, t) \ => L = m/2 (dot(r)^2 + omega ^2 r ^2 ) , space V = 0 \ (partial L) / (partial t) = 0 => underbrace(sum _(k) p _(k) dot(q)_(k) - L, = O) "erhalten" \ O = m dot(r) dot(r) - m/2 dot(r)^2 - m/2 omega^2 r^2 = m/2 dot(r)^2 - m/2 omega^2 r^2 $ ]