# # Numerische Berechnung der Trajektorien des harmonischen Oszillators # Hilfreiche Pakete import numpy as np import matplotlib.pyplot as plt import math # Konstanten from scipy.constants import g # Sinnvolle Konstanten def run_sim(gamma = 0, dt = 1e-2): x0 = 1 v0 = 0 omega0 = 1 tmax = 20 # Max time for the algorithm to terminate # Initial values x_t = [x0] x_t_exact = [x0] v_t = [v0] v_t_exact = [v0] T_t = [0.5*v0*v0] V_t = [0.5*omega0*omega0*x0*x0] E_t = [T_t[0]+V_t[0]] # exakter Wert der Energie: E_exact = E_t[0] Ediff_t = [0] # Implementation of the Euler-Algorithm for i in range(int(tmax // dt)): f = v_t[-1] x = x_t[-1] + f * dt # Calc new position # Change this for the damped one #v = v_t[-1] - dt * omega0 ** 2 * x_t[-1] # undamped v = v_t[-1] + dt * ( -2 * gamma * v_t[-1] - omega0 ** 2 * x_t[-1]) # damped (general) x_t.append(x) v_t.append(v) # Q: Wofuer werden die exacten Werte gebraucht wenn sich die # exacte Energie nicht aendert? x_exact = x0 * np.exp(-gamma * i * dt) * np.cos(omega0 * i * dt) v_exact = -omega0 * x0 * np.exp(-gamma * i * dt) * np.sin(omega0 * i * dt) x_t_exact.append(x_exact) v_t_exact.append(v_exact) # calculate the energy based on current velocity and position T = 1/2 * v ** 2 V = 1/2 * omega0 ** 2 * x ** 2 E = T + V T_t.append(T) V_t.append(V) E_t.append(E) Ediff_t.append(E-E_exact) # TIPP: Zum erstellen mehrerer Plots auf einmal, siehe z.B.: # https://matplotlib.org/3.1.1/gallery/subplots_axes_and_figures/subplot.html kwargs = {'c':'b'} font_kwargs = {'fontsize':14} times = np.arange(0,len(x_t))*dt abs_max = max(x_t, key=abs) fig,ax = plt.subplots(1,4,figsize=(18,7)) #actual plots ax[0].plot(times,x_t,**kwargs) ax[0].plot(times,x_t_exact,'r--', label="exakt") # add exact values to plot ax[1].plot(x_t,v_t,**kwargs) ax[1].plot(x_t_exact,v_t_exact,'r--') # add exact values to plot ax[2].plot(times,T_t,label = "T") ax[2].plot(times,V_t,label = "V") ax[2].plot(times,E_t,label = "E = T+V") ax[3].plot(times,Ediff_t,label = "Fehler in der Energie") #style changes ax[0].set_xlim(0,len(x_t)*dt) ax[0].set_ylim(-abs_max,abs_max) ax[0].set_xlabel("t",**font_kwargs) ax[0].set_ylabel("$x(t)$",**font_kwargs) ax[1].set_xlabel("$x(t)$",**font_kwargs) ax[1].set_ylabel("$v(t)$",**font_kwargs) ax[2].set_xlim(0,len(x_t)*dt) ax[2].set_ylim(-abs_max,abs_max) ax[2].set_xlabel("t",**font_kwargs) ax[2].set_ylabel("Energies",**font_kwargs) ax[2].set_xlim(0,len(x_t)*dt) ax[2].set_ylim(-abs_max,abs_max) ax[2].set_xlabel("t",**font_kwargs) ax[2].set_ylabel("Differenz",**font_kwargs) # Generate the legend for all subplots plt.legend(handles=[ax[0].lines[0], ax[0].lines[1], ax[1].lines[0], ax[1].lines[1], ax[2].lines[0], ax[2].lines[1], ax[2].lines[2], ax[3].lines[0]], loc='upper right') plt.tight_layout() # Make sure the legend doesn't cover any plot plt.savefig(f"Hahn_gamma={gamma};dt={dt}.png") for dt in [1e-2, 1e-3, 1e-4]: run_sim(0, dt) for gamma in [0.1, 1, 1.2]: run_sim(gamma, 1e-4)