// Main VL template #import "../preamble.typ": * // Fix theorems to be shown the right way in this document #import "@preview/ctheorems:1.1.3": * #show: thmrules // Main settings call #show: conf.with( // May add more flags here in the future num: 7, type: 0, // 0 normal, 1 exercise date: datetime.today().display(), //date: datetime( // year: 2025, // month: 5, // day: 1, //).display(), ) = Uebersicht Ist $f$ diffbar in $x_0 $, so gilt $ exists "lineare Abbildung" L: RR^n -> CC, "sodass" \ lim_(n -> 0) (f (x_0 + h) - f (x_0 ) - L h) / (norm(h)) = 0, L = d f (x_0 ). $ #theorem[ Sei $U subset RR^n $ offen und $f: U -> CC$ in $a in U$ differenzierbar. Dann ist $f$ in $a$ in jede Richtung differenzierbar und es gilt $ d f (a) h = partial / (partial n) f (a) = sum_(i = 1)^(n) partial / (partial i) f (a) h_i . $ ] #proof[ Fuer $h$ hinreichend klein schreibe $ f (a + h) = f (a) + d f (a) h + R (h) "mit" lim_(h -> 0) (R (h)) / (norm(h)) = 0. $ Fuer $h in RR^n $ und $t in RR$ hinreichend klein folgt $ f (a + t h) = f (a) + d f (a) (t h) + R (t h). $ Fuer $t != 0$ folgt $ d f (a) h = (f (a + t h) - f (a) - R (t h)) / (t), $ da $f$ in $a$ diffb. ist, gilt $lim_(t -> 0) (R (t h)) / (t) < norm(h) (R (t h)) / (t norm(h)) = 0$ Mit @gl1 folgt, dass der Grenzwert $lim_(t -> 0) (f (a + t h)- f (a)) / (t) $ existiert und dass gilt $ d f (a) h = partial / (partial h) f (a). $ Das ist eine wichtige Gleichheit zwischen Differenzial und Richtungsableitung Da $ d f (a) h$ eine lineare Abbildung ist, gilt $ d f (a) h = d f (a) (sum_(k = 1)^(n) e_k h_k ) = sum_(k = 1)^(n) h_k underbrace(d f (a) e_k, #[@gl2] ). $ Also $d f (a) h = sum_(k = 1)^(n) h_k * partial / (partial n) f (a)$. ] #remark[ Sei $s in RR$. $ lim_(t -> 0) (f (a + t * s h) - f (a)) / (s t) = partial / (partial s h) f (a), \ s lim_(t' -> 0) (f (a + t' h)-f (a)) / (t') = s partial / (partial h) f (a). $ Betrachte $ f: U subset RR^n -> CC, d f (a): RR^n -> CC, h |-> d f (a) h = sum_(k = 1)^(n) h_k partial / (partial k) f (a). $ ] #definition[ Ist $f: U -> CC$ in $a in U$ partiell Differenzierbar, so definieren wir den Gradienten von $f$ in $a$ als $ grad(f) (a) := vec(partial / (partial 1) f (a), partial / (partial 2) f (a), dots.v , partial / (partial n) f (a) ). $ Wir schreiben auch $ arrow(nabla) f (a) = grad(f) (a) = f' (a). $ ] #example[ Ist $f (x_1, x_2 )= x_1 ^2 + x_2 ^2 $ so gilt in $(a_1, a_2)$ $ arrow(nabla) f (a) = vec(2 a_1 , 2 a_2 ). $ ] "Der Gradient gibt die Richtung des starksten Anstiegs an." #theorem[ Sei $U subset RR^n $ offen und $f: U -> CC$ in $a in U$ differenzierbar. Ist $arrow(nabla) f (a) = 0$ so gilt $ partial / (partial h) f (a) = 0, forall h in RR^n . $ Ist $arrow(nabla) f (a) != 0$, so gilt $abs(partial / (partial n) f (a)) <= norm(arrow(nabla) f (a))_(2) forall h in RR^n "mit" norm(h)_(2) = 1$ und Gleichheit fuer $h = (arrow(nabla) f (a)) / (norm( arrow(nabla) f (a))_(2) ) $. ] #proof[ Ist $arrow(nabla) f (a) = 0 "und" h in RR^n $, so folgt nach @tem2, $partial / (partial n) f (a) = sum_(k = 1)^(n) partial / (partial n) f (a) h_(k) = arrow(nabla) f (a) = 0 $. Sei nun $h in RR^n $ mit $norm(h)_(2) = 1$. Mit Cauchy-Schwarz erhalten wir $ abs(partial / (partial n) f (a)) = abs( sum_(k = 1)^(n) h_k partial / (partial k) f (a)) = underbrace(norm(h)_(2), =1) norm( arrow(nabla) f (a))_(2) $ und Gleichheit fuer $ h = (arrow(nabla) f (a)) / (norm( arrow(nabla) f (a))_(2) ) $ ] $ f: U -> CC, a in U $ $ f "diffbar" ==>^(#[@tem2]) f "ist partiell diffbar". $ #example[ Sei $f: RR^2 -> RR$ gegeben durch $ f (x,y) = cases((x ^2 y) / (x^2 + y^2 ) ,0). $ Dann ist $f$ stetig in 0 und fuer jedes $h = (h_1, h_2 ) in RR^2$ existiert die Richtungsableitung. $ (f (h_1, h_2 ) - f (0,0) - d f (0) h)/(norm((h_1, h_2 ))_(2) ) = (h_1 ^2 h_2 ) / (norm((h_1, h_2 ))_(2) ^3) = (h_1 ^3 ) / (( 2 h_1 ^2 )^(3/2) ) = +- (1) / (2^(3/2) ) != 0 $ Also ist $f$ nicht diffbar in dem Punkt $(0,0)$. ] #theorem[ Sei $U subset RR^n $ offen, $f: U -> CC$ in jedem Punkt in U partiell differenzierbar und die partiellen Ableitungen $partial / (partial k) f: U -> CC, 1 <= k <= n "im" a in U$ stetig. Dann ist $f$ in $a$ differenzierbar. ]