// Main VL template #import "../preamble.typ": * // Fix theorems to be shown the right way in this document #import "@preview/ctheorems:1.1.3": * #show: thmrules // Main settings call #show: conf.with( // May add more flags here in the future num: 5, type: 0, // 0 normal, 1 exercise date: datetime.today().display(), //date: datetime( // year: 2025, // month: 5, // day: 1, //).display(), ) = Uebersicht = Partielle Differentialgleichungen ODE $ arrow(x) (t) => m (dif ^2 arrow(x)) / (dif t^2 ) = F (arrow(x), dot(arrow(x))). $ PDE $ (partial ^2 psi) / (partial t^2 ) = u^2 (partial ^2 psi) / (partial x^2 ) , space psi (x,t) \ (partial T) / (partial t) = D (partial ^2 T) / (partial x^2 ) , space "Fourier Gesetz" arrow(j) = kappa arrow(nabla) T. $ Poisson-Gleichung $ Delta phi = - (rho (arrow(x))) / (epsilon_0 ). $ Lineare partielle DGL $ L [phi (arrow(x))] = rho (arrow(x)) \ phi (arrow(x)) = phi_0 (arrow(x)) "auf Rand" partial Omega \ "gesucht ist die Loesung von Gebiet" Omega. $ #example[ Poisson-Gleichung. Fuehre eine Diffferenzdiskretisierung durch $ phi (x,y) tilde.equiv phi (I_(x) , I_(y) ) \ Delta phi = (partial ^2 phi) / (partial x^2 ) + (partial ^2 phi) / (partial y^2 ) = (phi (i_(x) + 1 , i_(y) ) - 2 phi (i_(x) , i_() )) / () $ ] Doolittle Verfahren Gauss-Elimination Verfahren