// Main VL template #import "../preamble.typ": * // Fix theorems to be shown the right way in this document #import "@preview/ctheorems:1.1.3": * #show: thmrules // Main settings call #show: conf.with( // May add more flags here in the future num: 9, type: 0, // 0 normal, 1 exercise date: datetime.today().display(), //date: datetime( // year: 2025, // month: 5, // day: 1, //).display(), ) = Exkurs in die Geometrie Zunaechst betrachten wir einen Massepunkt $m$ in $arrow(r) in RR^(3) $. Wir kennen die kartesischen Raumkoordinaten. Der Ursprung bleibt bei der Transformation gleich. Es gilt fuer die Basisvektoren $ arrow(e)_(i) * arrow(e)_(j) = delta_(i j). $ Die Koordinatentransformation muss umkehrbar sein in fast jedem Punkt $ x_(i) = x_(i) (q_1, q_2, ..., q_n ). $ Theoretische Physik geht los wenn alle griechischen Buchstabe fuer Indizes verbraucht sind. $ arrow(r) = underbrace(x_(i) arrow(e)_(i), forall P) = x_(i) (q_1, q_2, q_3 ) arrow(e)_(i) =^(!) q_j arrow(q)_(j) <- "haengen von" P "ab". $ Die $q_i $ Kurven koennen krummlinieg verlaufen. Die Basisvektoren im Punkt $P$ sind gegeben durch $ arrow(q)_(i) = (partial arrow(r) (p)) / (partial q_i) , arrow(r) = x_(i) (q_1, q_2, q_3) arrow(e)_(i), \ arrow(q)_(i) = (partial x_(j) ) / (partial q_i ) arrow(e)_(arrow(j)) , arrow(e)_(i) = (partial q_j ) / (partial x_(i) ) arrow(q)_(j). $ In fast jedem Punkt sind diese linear unabhaengig. Dreibein ${arrow(q)_(1) , arrow(q)_(2) , arrow(q)_(3) }$. #example[ Kugelkoordinaten. $ x_1 = r cos phi sin theta \ x_2 = r sin phi sin theta \ x_3 = r cos theta \ r >0 , space theta in [0, pi] , space phi in [0, 2 pi) $ Durch Ableiten kann so das Dreibein gebildet werden. Dieses erfuellt die gefordeten Eigenschaften von linearer Unabhaengigkeit. ] Es gilt $ d arrow(r) &= (partial arrow(r)) / (partial r) d r + (partial arrow(r)) / (partial theta) d theta + (partial arrow(r)) / (partial phi) d phi ==> d arrow(r) * d arrow(r) = d^2 r + r^2 d^2 theta + r^2 sin^2 theta d^2 phi \ &= d x_1 arrow(e)_(2) + d x_2 arrow(e)_(2) + d x_3 arrow(e)_(3). $ = Metrischer Tensor Wird auch metrisches Dings genannt. Es gilt $ g_(i j) &= arrow(g)_(i) * arrow(g)_(j), \ g_(i j) &= mat( 1, 0, 0; 0, r^2 , 0; 0, 0, r^2 sin^2 theta; ), \ g_(i j) &= (partial x_m ) / (partial q_i ) arrow(e)_(m) * (partial x_k ) / (partial q_(j) ) arrow(e)_(k) = (partial x_(m) ) / (partial q_(i) ) (partial x_(k) ) / (partial q_(j) ) underbrace(arrow(e)_(m) * arrow(e)_(k), = delta_(m k) ) = (partial x_k ) / (partial q_i ) (partial x_k ) / (partial q_j ). $ = Bewegungsgleichung fuer $q_i $ Hier sind $dot(q)_(j)$ die verallgemeinerten Geschwindigkeiten. Berechne $ dif / (dif t) T = m dot(x)_(i) dot.double(x)_(i) \ T = m/2 dot(arrow(r)) * dot(arrow(r)) = m/2 dot(x)_(i) dot(x)_(i) \ dot(arrow(r)) (t) = (partial arrow(r)) / (partial q_(j) ) dot(q)_(j) = dot(q)_(j) arrow(g)_(j) , space dot(q)_(j) "verallgemeinerte Geschwindigkeiten" \ (partial dot(arrow(r))) / (partial dot(q)_(j) ) = arrow(g)_(i); quad arrow(g)_(i) = (partial arrow(r)) / (partial q_(i) ) \ arrow(r) = x_(i) arrow(e)_(i) \ (dif arrow(r)) / (dif t) = dot(x)_(i) arrow(e)_(i) = (partial x_(i) ) / (partial q_j ) dot(q)_(j) arrow(e)_(i) = (partial arrow(r)) / (partial q_(j) ) dot(q)_(j). $ Wir starten von Newton II $ m dot.double(arrow(r)) = arrow(f) \ <==> m arrow(e)_(i) * dot.double(arrow(r)) = arrow(e)_(i) * arrow(f) \ m dot.double(x)_(i) = f_(i) , i = 1,2.3. $ Jetzt werden beliebige Koordinaten gewaehlt $ m arrow(g)_(i) * dot.double(arrow(r)) = arrow(g)_(i) * arrow(f) \ <==> m (arrow(g)_(i) * dot.double(arrow(r)) + dot(arrow(g))_(i) * dot(arrow(r))) = arrow(g)_(i) * arrow(f) + m dot(arrow(g))_(i) * dot(arrow(r)) \ <==> m dif / (dif t) (arrow(g)_(i) * dot(arrow(r))_(i) ) = arrow(g)_(i) * arrow(f) + m dot(arrow(r)) * (partial dot(arrow(r))) / (partial q_(i) ) \ <==> m partial / (partial t) ((partial dot(arrow(r))_(i) ) / (partial q_(i) ) * dot(arrow(r))_(i) ) = arrow(g)_(i) arrow(f) + m dot(arrow(r))* (partial dot(arrow(r))) / (partial q_(i) ) $ Nebenrechung $ dot(arrow(g))_(i) = dif / (dif t) (partial arrow(r)) / (partial q_(i) ) = partial / (partial q_(j) ) ((partial arrow(r)) / (partial q_(i) ) )dot(q)_(j) \ = (partial ^2 arrow(r)) / (partial q_(j) q_(i) ) dot(q)_(j) partial / (partial q_(i) ) ((partial arrow(r)) / (partial q_(j) ) dot(q)_(j) ) = partial / (partial q_i ) dot(arrow(r)) "und" arrow(q)_(i) = (partial dot(arrow(r))) / (partial dot(q)_(i) ) = (partial arrow(r)) / (partial q_(i) ) $ Betrachtung der kinetischen Energie $ T = T (dot(x)_(1) , dot(x)_(2) , dot(x)_(3) ) = T (q_1, q_2, q_3, dot(q)_(1) , dot(q)_(2) , dot(q)_(3) ) \ ==> dif / (dif t) ((partial T) / (partial dot(q)_(i) ) ) = (partial T) / (partial q_(i) ) + arrow(g)_(i) * arrow(f). $ Allgemein gilt fuer die Produktregel $ (partial T) / (partial dot(q)_(j) ) = m/2 ((partial dot(x)_(i) ) / (partial dot(q)_(j) ) dot(x)_(i) + dot(x)_(i) (partial dot(x)_(i) ) / (partial dot(q)_(j) ) ). $ Skalarprodukt ist eine Projektion. Verallgemeinere die kinetische Energie $ T &= m/2 dot(arrow(r))^2 = m/2 (dot(x)_(i) * dot(x)_(i) ) = m/2 (dot(q)_(i) arrow(g)_(i) ) * (dot(q)_(j) arrow(g)_(j)) = m/2 dot(q)_(i) dot(q)_(j) space arrow(g)_(i) * arrow(g)_(j) \ &= m/2 sum_(i,j) g_(i j) dot(q)_(i) dot(q)_(j), \ &g_(i j) = g _(i j) (q_1, q_2, q_3 ). $ = Konservative Kraftfelder Betrachte die Kraft mit $V = V (x_1, x_2, x_3 ) = V (x_1 (q_1, q_2, q_3), ...) = V (q_1, q_2, q_3 )$ und der Lagrangefunktion als $L (q_1, q_2, q_3, dot(q)_(1) , dot(q)_(2) , dot(q)_(3) ) := T (q_(i) , dot(q)_(i) ) - V (q_(i) )$ $ arrow(f) (arrow(r)) = - arrow(nabla) V (arrow(r)) = - (partial V) / (partial arrow(r)) \ arrow(f) * arrow(g)_(i) = - (partial V) / (partial arrow(r)) * (partial arrow(r)) / (partial q_(i) ) = - (partial V) / (partial x_(j) ) (partial x_(j) ) / (partial q_(i) ) = - (partial V) / (partial q_(i) ) \ ==> dif / (dif t) ((partial T) / (partial dot(q)_(i) ) ) - (partial T) / (partial q_(i) ) + (partial V) / (partial dot(q)_(i) ) =^(!) 0 \ V = V (q_1, q_2, q_3 ) ==> (partial V) / (partial dot(q)_(i) ) = 0 \ ==> dif / (dif t) (partial L) / (partial dot(q)_(i) ) - (partial L) / (partial q_(i) ) = 0 $ Diese Lagrangegleichung der II Art ist - Forminvariant - Nicht messbar - Nicht eindeutig Das meschanische System ist so definiert durch $q_(i) "und" L$. Der *verallgemeinerte Impuls* ist gegeben durch $ p_(i) := (partial L) / (partial dot(q)_(i) ). $ Eine *zyklische verallgemeinerte Koordinate* $q_(i) $ erfuellt $ (partial L) / (partial q_(i) ) = 0 ==> dif / (dif t) (partial L) / (partial dot(q)_(i) ) = 0 <==> (dif p_(i) ) / (dif t) = 0 <==> p_(i) "erhalten" $