mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
auto up 13:49:41 up 0:58, 2 users, load average: 0.36, 0.45, 0.51
This commit is contained in:
@@ -8,7 +8,7 @@
|
|||||||
// Main settings call
|
// Main settings call
|
||||||
#show: conf.with(
|
#show: conf.with(
|
||||||
// May add more flags here in the future
|
// May add more flags here in the future
|
||||||
num: 5,
|
num: 6,
|
||||||
type: 0, // 0 normal, 1 exercise
|
type: 0, // 0 normal, 1 exercise
|
||||||
date: datetime.today().display(),
|
date: datetime.today().display(),
|
||||||
//date: datetime(
|
//date: datetime(
|
||||||
@@ -22,11 +22,95 @@
|
|||||||
|
|
||||||
== Kondensatoren und Kapazitaet
|
== Kondensatoren und Kapazitaet
|
||||||
|
|
||||||
|
Wir betrachten ein Volumen $V$ mit verschiedenen Ladungen $S_(i) $ (Leitern) im Inneren des Volumens.
|
||||||
|
|
||||||
Die Laplace Gleichung
|
Die Laplace Gleichung
|
||||||
$
|
$
|
||||||
Delta f_(i) (arrow(x)) = 0 space forall arrow(x) in V
|
Delta f_(i) (arrow(x)) = 0 space forall arrow(x) in V
|
||||||
$
|
$
|
||||||
mit den Randbedingungen
|
mit den Randbedingungen
|
||||||
$
|
$
|
||||||
f_(i) (arrow(x)) = 1 \, space forall j != i \, space f_(i) |_(j) = 0
|
f_(i) (arrow(x)) |_(S_(i)) = 1 \, space forall j != i : f_(i) |_(S_(j)) = 0.
|
||||||
$
|
$
|
||||||
|
Linearitaet der Maxwellgleichungen
|
||||||
|
$
|
||||||
|
Phi (arrow(x)) = sum_(i = 1)^(N + 1) phi_(i) f_(i) (arrow(x)).
|
||||||
|
$
|
||||||
|
|
||||||
|
Ladung auf Leiter
|
||||||
|
$
|
||||||
|
Q_(i) = integral _(S_(i) ) dif S sigma_(i) = epsilon_0 integral _(S_(i) ) dif S arrow(E) * hat(n) = - epsilon_0 integral _(S_(i) ) dif arrow(S) * arrow(nabla) Phi \
|
||||||
|
= - epsilon_0 sum _(j = 1) ^(N + 1) phi_(j) integral _(S_(i) ) dif arrow(S)* arrow(nabla) f_(j) \
|
||||||
|
= sum _(j = 1) ^(N) C_(i j) phi_(j).
|
||||||
|
$
|
||||||
|
Mit der Kapazitaetsmatrix
|
||||||
|
$
|
||||||
|
C_(i j) = underbrace(- epsilon_0 integral _(S_(i) ) dif arrow(S) * arrow(nabla) f_(j), "Definition") = - epsilon_0 integral _(partial V) dif arrow(S)* (arrow(nabla) f_(j)) f_(i) \
|
||||||
|
= ^("Gauss") epsilon_0 integral _(V) dif ^3 x arrow(nabla) * (f_(i) arrow(nabla) f_(j) ) = epsilon_0 integral _(V) dif ^3 x (arrow(nabla) f_(i) * arrow(nabla) f_(j) ) + 0
|
||||||
|
$
|
||||||
|
welche nur von der Geometrie des Problems abhaengt. Diese hat eine Reihe von Eigenschaften
|
||||||
|
- Sie ist symmetrisch $C_(i j) = C_(j i) $
|
||||||
|
|
||||||
|
Es gilt
|
||||||
|
$ sum _(i) C_(i j) = - epsilon_0 sum _(i) integral _(S_(i) ) dif arrow(S) * arrow(nabla) f_(j) \
|
||||||
|
= epsilon_0 integral _(partial V) dif arrow(S) * arrow(nabla) f_(j) \
|
||||||
|
= ^("Gauss") epsilon_0 integral _(V) dif^3 x underbrace(arrow(nabla) * (arrow(nabla) f_(j) ), = 0) = 0.
|
||||||
|
$
|
||||||
|
#example[
|
||||||
|
Plattenkondensator.
|
||||||
|
|
||||||
|
Es gilt
|
||||||
|
$
|
||||||
|
C = mat(
|
||||||
|
C_(1 1) , C_(1 2) ;
|
||||||
|
C_(2 1) , C_(2 2) ;
|
||||||
|
) = mat(
|
||||||
|
C_(1 1) , - C_(1 1) ;
|
||||||
|
- C_(1 1) , C_(1 1) ;
|
||||||
|
).
|
||||||
|
$
|
||||||
|
Dieser hat also einfach eine Kapazitaet von $C$.
|
||||||
|
Konkret gilt
|
||||||
|
$
|
||||||
|
arrow(E) = (sigma) / (epsilon_0 ) hat(z) \
|
||||||
|
V = phi (0) - phi (d) = E d = (sigma d) / (epsilon_0 ) = (Q d) / (A epsilon_0 ) \
|
||||||
|
C = (Q) / (V) = (A epsilon_0 ) / (d).
|
||||||
|
$
|
||||||
|
]
|
||||||
|
In einem Kondensator wird Energie gespeichert
|
||||||
|
$
|
||||||
|
U = (epsilon_0 ) / (2) integral dif^3 x arrow(E)^2 (arrow(x)) = (epsilon_0 ) / (2) A d ((sigma) / (epsilon_0 ) )^2 \
|
||||||
|
= 1/(2 epsilon_0 ) Q^2 /A d = 1/2 (Q^2 ) / (C) = 1/2 C V^2.
|
||||||
|
$
|
||||||
|
Fuer eine allgemeine Konfiguration
|
||||||
|
$
|
||||||
|
U = 1/2 sum _(i) Q_(i) phi_(i) \
|
||||||
|
= 1/2 sum _(i, j) C_(i j) phi_(i) phi_(j).
|
||||||
|
$
|
||||||
|
|
||||||
|
= Magnetfelder
|
||||||
|
|
||||||
|
Zum Zeitpunkt $arrow(j)$ ist auch der Zeitpunkt $arrow(B)$. Es gilt $rho = 0 ==> arrow(E) = 0$.
|
||||||
|
|
||||||
|
Maxwellgleichungen
|
||||||
|
$
|
||||||
|
arrow(nabla) times arrow(B)= mu_0 arrow(j) \
|
||||||
|
arrow(nabla) * arrow(B) = 0 space "es gibt keine magnetischen Monopole".
|
||||||
|
$
|
||||||
|
|
||||||
|
=== Konsistenzcheck
|
||||||
|
|
||||||
|
Konti
|
||||||
|
$
|
||||||
|
(diff rho) / (diff t) + arrow(nabla) arrow(j) = 0 \
|
||||||
|
"Zeitunabhaengig" ==> arrow(nabla) * arrow(j) = 0 \
|
||||||
|
arrow(nabla) (arrow(nabla) times arrow(B)) = 0.
|
||||||
|
$
|
||||||
|
|
||||||
|
American Journal of Physics: 92 (2024) 583 \
|
||||||
|
J. Franklin, D. Griffiths, D. Schroeter \
|
||||||
|
A taxonomy of magnetic field lines
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
Magnetische Feldlinien muessen nicht geschlossen sein.
|
||||||
|
]
|
||||||
|
|||||||
Reference in New Issue
Block a user