mirror of
https://gitlab.gwdg.de/j.hahn02/university.git
synced 2026-01-01 06:44:25 -05:00
auto up 11:48:23 up 3:25, 2 users, load average: 0.17, 0.26, 0.17
auto up 12:53:47 up 0:02, 2 users, load average: 0.43, 0.48, 0.21 auto up 13:49:41 up 0:58, 2 users, load average: 0.36, 0.45, 0.51 auto up 09:41:45 up 1:27, 2 users, load average: 0.31, 0.36, 0.36 auto up 15:54:41 up 1:28, 2 users, load average: 2.26, 2.48, 1.96 auto up 11:46:48 up 1:36, 2 users, load average: 0.24, 0.17, 0.20 auto up 11:49:23 up 0:19, 2 users, load average: 0.09, 0.27, 0.37 auto up 08:23:17 up 0:01, 2 users, load average: 0.99, 0.42, 0.16 auto up 14:35:31 up 3:21, 2 users, load average: 1.95, 1.40, 1.40 auto up 11:42:06 up 1:56, 2 users, load average: 0.03, 0.13, 0.17 auto up 09:02:45 up 0:01, 2 users, load average: 3.05, 1.13, 0.42
This commit is contained in:
102
S3/ExPhyIII/VL/ExIIIVL7.typ
Normal file
102
S3/ExPhyIII/VL/ExIIIVL7.typ
Normal file
@@ -0,0 +1,102 @@
|
||||
// Main VL template
|
||||
#import "../preamble.typ": *
|
||||
|
||||
// Fix theorems to be shown the right way in this document
|
||||
#import "@preview/ctheorems:1.1.3": *
|
||||
#show: thmrules
|
||||
|
||||
// Main settings call
|
||||
#show: conf.with(
|
||||
// May add more flags here in the future
|
||||
num: 5,
|
||||
type: 0, // 0 normal, 1 exercise
|
||||
date: datetime.today().display(),
|
||||
//date: datetime(
|
||||
// year: 2025,
|
||||
// month: 5,
|
||||
// day: 1,
|
||||
//).display(),
|
||||
)
|
||||
|
||||
= Uebersicht
|
||||
|
||||
== Maxwellgleichungen in Materie
|
||||
|
||||
Fuer $arrow(E) "und" arrow(B)$ Felder ist die Idee die Aufteilung der Ladungin freie und in Materie gebundene Ladung. Es gilt
|
||||
$
|
||||
arrow(nabla) * arrow(E) = (rho) / (epsilon_0 ) = (rho_(f) + rho_(g) ) / (epsilon_0 ) \
|
||||
arrow(nabla) * arrow(E) = 1/epsilon_0 (rho_(f) - arrow(nabla) *arrow(p)) \
|
||||
arrow(nabla) * (epsilon_0 arrow(E) + arrow(P)) = rho_(f) \
|
||||
arrow(nabla) * arrow(D) = phi_(f) \
|
||||
arrow(P) = underbrace(n, "Dichte") .. underbrace(arrow(p), "Dipole") .. "ist die Polarisation".
|
||||
$
|
||||
Es gilt weiterhin
|
||||
$
|
||||
arrow(nabla) times (arrow(B)/mu_0 - arrow(M)) = arrow(j)_(f) \
|
||||
arrow(nabla) times arrow(H).
|
||||
$
|
||||
|
||||
== Zeitlich veraenderliche Felder
|
||||
|
||||
Vom Ampereschen Gesetz auf das Maxwellsche Gesetz
|
||||
$
|
||||
arrow(nabla) times arrow(B) = mu_0 (arrow(j) + epsilon_0 (diff arrow(E)) / (diff t) ) = mu_0 (arrow(j)_(f) + arrow(j)_(g) + arrow(j)_(g) + epsilon_0 (diff arrow(E)) / (diff t) ).
|
||||
$
|
||||
Polarisatoinsstroeme sind also
|
||||
$
|
||||
arrow(j)_(P) = (diff arrow(P)) / (diff t).
|
||||
$
|
||||
Es folgt
|
||||
$
|
||||
arrow(nabla) times arrow(B) = mu_0 (arrow(j)_(f) + (diff (arrow(P) + epsilon_0 arrow(E))) / (diff t) + arrow(nabla) times arrow(M)) \
|
||||
arrow(nabla) times ((arrow(B)) / (mu_0 ) - arrow(M)) = arrow(j)_(f) + (diff arrow(D)) / (diff t) \
|
||||
arrow(nabla) times arrow(H) = arrow(j)_(f) + partial _(t) arrow(D).
|
||||
$
|
||||
Also fuer die Maxwellgleichungen
|
||||
$
|
||||
arrow(nabla) * arrow(D) &= rho_(f) \
|
||||
arrow(nabla) * arrow(B) &= 0 \
|
||||
arrow(nabla) times arrow(E) &= - partial _(t) arrow(B)\
|
||||
arrow(nabla) times arrow(H) &= arrow(j)_(f) + partial _(t) arrow(D) \
|
||||
arrow(D) &= epsilon_(r) epsilon_0 arrow(E) .. "(wenn" arrow(P) prop arrow(E)) .. "isotrop" \
|
||||
arrow(H) &= 1/ (mu_(r) mu_0 ) arrow(B) .. "linear".
|
||||
$
|
||||
|
||||
Ohne Stroeme ergibt sich dann
|
||||
$
|
||||
arrow(nabla) * arrow(D) = 0 \
|
||||
arrow(nabla) *arrow(B) = 0 \
|
||||
arrow(nabla) times arrow(E) = - partial _(t) arrow(B) \
|
||||
arrow(nabla) times arrow(H) = partial _(t) arrow(D).
|
||||
$
|
||||
Fuer $epsilon (arrow(r)) "und" mu (arrow(r)) "const."$ betrachte
|
||||
$
|
||||
arrow(nabla) * arrow(E) = 0 \
|
||||
arrow(nabla) *arrow(B) = 0 \
|
||||
arrow(nabla) times arrow(E) = - partial _(t) arrow(B) \
|
||||
arrow(nabla) times arrow(B) = mu_(r) mu_(0) epsilon_(r) epsilon_0 partial _(t) arrow(E)\
|
||||
==> c = c_0 /n "mit" n = sqrt(epsilon_(r) mu_(r) ).
|
||||
$
|
||||
|
||||
In der Optik ist $n$ als Brechungsindex wichtig auch wenn $n$ nicht konstant ist
|
||||
$
|
||||
n = n (arrow(r)) approx sqrt(epsilon (arrow(r))) \, space "da" mu_(r) approx 1.
|
||||
$
|
||||
Lichtausbreitung im Dielektrikum mit $rho_(f) = 0 "und" arrow(j)_(f) = 0$. Oft ist
|
||||
$n (arrow(r)) "abschnittsweise konstant."
|
||||
$
|
||||
Dadurch ist dann die Loesung wieder trivial auf den einzelnen Abschnitten.
|
||||
|
||||
= Herleitung der Wellengleichung in nicht homogenen Materialien
|
||||
Es gilt
|
||||
$
|
||||
arrow(nabla) times (arrow(nabla) times arrow(E)) = - mu_0 (arrow(nabla) times partial _(t) arrow(H) ) = - mu_0 partial _(t) (arrow(nabla) times arrow(H)) = ^("IV") - mu_0 epsilon_0 n^2 partial _(t) ^2 arrow(E) \
|
||||
arrow(nabla) times (arrow(nabla) times arrow(E)) = arrow(nabla) (arrow(nabla) * arrow(E )) - arrow(nabla) ^2 arrow(E) = - mu_0 epsilon_0 n^2 (arrow(r)) partial _(t) ^2 arrow(E) \
|
||||
arrow(nabla) * arrow(D) = 0 = epsilon_0 arrow(nabla) (n^2 *arrow(E)) = epsilon_0 [arrow(nabla) (n^2 ) * arrow(E) + n^2 (arrow(nabla) * arrow(E))] \
|
||||
==> arrow(nabla) * arrow(E) = - 1/n^2 (arrow(nabla) n^2 * arrow(E) ).
|
||||
$
|
||||
Es folgt dann fuer die Wellengleichung
|
||||
$
|
||||
arrow(nabla) ^2 arrow(E) + arrow(nabla) [1/(n (arrow(r))^2 ) (arrow(nabla) n^2 ) * arrow(E)] - epsilon_0 mu_0 n^2 (arrow(r)) (diff ^2 arrow(E)) / (diff t^2 ) = 0.
|
||||
$
|
||||
|
||||
Reference in New Issue
Block a user