anamech to 13

This commit is contained in:
2025-06-11 20:52:38 +02:00
parent b622377bb2
commit a6d88ebc3d
17 changed files with 1417 additions and 1 deletions

200
S2/AnaMech/VL/AnMeVL12.typ Normal file
View File

@@ -0,0 +1,200 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 12,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
E: 2.6.25
= Uebersicht
+ Ein Beispiel fuer Lagrange II
+ Erhaltungsgroessen in L I und L II
+ Symetrien u. Erhaltungsgroessen
= Lagrange Funktion
Es gilt fuer die Lagrange Funktion
$
L (q_(k) dot(q)_(k), t) = T (q_(k), dot(q)_(k) , t) - V (q_(k) , t) , space k = 1, ..., f.
$
Lagrange II
$
dif / (dif t) (partial L) / (partial dot(q)_(k) ) - (partial L) / (partial q_(k) ) = 0 , space k = 1, ..., f.
$
#example[
MP im Kegel.
Es wirkt nur die Gravitationskraft.
Hier gilt fuer die Koordinaten
$
R = 1 => f = 2 \
rho = z tan alpha.
$
Es gilt fuer eine Z.B.
$
g (x, y, z) = x ^2 + y ^2 - z ^2 tan ^2 alpha = 0 \
x = r sin alpha cos phi , space theta = alpha \
y = r sin alpha sin phi \
z = r cos alpha.
$
Dann waehle fuer die generalisierten Koordinaten
$
q = {r, phi}.
$
Das ergibt fuer die Lagrange-Funktion
$
L (x,y,z,dot(x),dot(y), dot(z)) = m/2 (dot(x)^2 + dot(y)^2 + dot(z)^2 ) - m g z \
=> L = m/2 (dot(r)^2 + r ^2 dot(phi)^2 sin ^2 alpha) - underbrace(m g cos alpha r, V (r)).
$
Hier gibt es eine zyklische Koordinate
$
(partial L) / (partial phi) = 0 => p_(phi) = (partial L) / (partial dot(phi)) = m r ^2 sin ^2 alpha dot(phi) prop L_(z)
$
#highlight[TODO: berechne Drehimpuls in Kugelkoordinaten]
]
= Erhaltungsgroessen in L I und L II
Es gilt
$
m_(n) dot.double(x)_(n) = F_(n) sum_(alpha = 1)^(R) alpha_(alpha) (partial g_(alpha) (arrow(x), t)) / (partial x_(n) ) , space n = 1, ..., 3N \
g_(alpha) (arrow(x), t) = 0 , space alpha = 1, ..., R \
=> (x_(n) , lambda_(alpha) ).
$
== Energieerhaltung
=== Lagrange I
Wir betrachten Zwangskraefte
$
g_(alpha) (arrow(x), t) = 0 \
arrow(Z)_(alpha) * d arrow(r) = 0.
$
Wir wollen Erhaltung von mit $V = V (x_(n) )$
$
E = T + V \
(dif T) / (dif t) = dif / (dif t) sum_(n) 1/2 m_(n) dot(x)_(n) ^2 = sum _(n) m_(n) dot(x)_(n) dot.double(x)_(n) \
(dif V) / (dif t) = sum _(n) (partial_(n) V)dot(x)_(n) = - sum _(n) F_(n) dot(x)_(n) , space "Konservativ" => partial_(n) V = - F_(n).
$
Nebenrechnung
$
(dif g_(alpha) ) / (dif t) = sum _(n) (partial g_(alpha) ) / (partial x_(n) ) dot(x)_(n) + (partial g_(alpha) ) / (partial t) = 0.
$
Das ergibt dann
$
dif / (dif t) (T + V) = sum _(n) sum _(alpha) lambda_(alpha) (partial g_(alpha) ) / (partial x_(n) ) dot(x)_(n) = sum _(alpha) lambda_(alpha) (- (partial g_(alpha) ) / (partial t) ) .
$
Wir erwarten die Energieerhaltung nur fuer abg. und kons. Systeme.
Falls die Zwangskraefte sich also nicht mit der Zeit aendern, dann gilt die Energieerhaltung
$
(partial g_(alpha) ) / (partial t) = 0 space forall alpha \
=> E = T + V = "const".
$
=== Lagrange II
Allgemeine Erhaltungsgroessen.
Erinnerung fuer mechanische Groessen
$
Q = Q (q, dot(q), t) \
(dif Q) / (dif t) = 0 <=> Q "erhalten".
$
Wie bekommt man im Lagrangeformalismus erhaltungsgroessen
+ Zyklische Koordinaten
$
underbrace((partial L) / (partial q_(k) ) = 0, q_(k) "zyklisch") => dif / (dif t) (partial L) / (partial dot(q)_(k) ) = 0 => p_(k) "erhalten" , space p_(k) := "gen. Impuls".
$
Die Frage nach zyklischen Koordinaten darf nur gestellt werden, wenn man schon $f$ unabhaengige Koordinaten hat.
Nun
$
(partial g_(alpha) ) / (partial t) != 0 <=>^(!) (partial x_(n) ) / (partial t) != 0 and (partial L) / (partial t) = 0 \
(dif L) / (dif t) = sum _(k) (partial L) / (partial q_(k) ) dot(q)_(k) + sum _(k) (partial L) / (partial dot(q)_(k) ) dot.double(q)_(k) + (partial L) / (partial t) \
=> dif / (dif t) (sum _(k) (partial L) / (partial dot(q)_(k) ) - L) = - (partial L) / (partial t)
$.
Betrachte als Nebenrechnung
$
dif / (dif t) sum_(i=1)^(t) (partial L) / (partial dot(q)_(i) ) dot(q)_(i) = sum _(k) dot(q)_(k) dif / (dif t) (partial L) / (partial dot(q)_(k) ) = sum _(k) dot.double(q)_(k) (partial L) / (partial dot(q)_(k) ) =^("L II") sum _(k) (dot(q)_(k) (partial L) / (partial q_(k) ) + dot.double(q)_(k) (partial L) / (partial dot(q)_(k) ) ).
$
Es gilt also
$
(partial L) / (partial t) = 0 <=> sum _(k = 1) ^(f) p_(k) dot(q)_(k) - L "erhalten"
$ <erh>
Jetzt der Fall, dass
$
(partial g_(alpha) ) / (partial t) &= 0 , space (partial L) / (partial t) = 0 \
&=> x_(n) = x_(n) (q) \
&=> T = sum _(i, i) m_(i k) (q) dot(q)_(i) dot(q)_(k) \
&=> sum_(i=1)^(f) (partial L) / (partial dot(q)_(i) ) = sum _(k) (partial T) / (partial dot(q)_(k) ) dot(q)_(k) = 2 T (q, dot(q)) \
(partial L) / (partial t) = 0 &=> V (q, t) = V (q) \
sum_(k = 1)^(f) (partial L) / (partial dot(q)_(k) ) dot(q)_(k) - L &= 2 T - (T - V) = T + V = E.
$
Nun der naechste Fall, dass
$
(partial L) / (partial t) != 0 => "keine Erhaltungsgroesse".
$
Zuletzt
$
(partial L) / (partial t) = 0 , space (partial g_(alpha) ) / (partial t) != 0 => (partial x_(n) ) / (partial t) != 0 \
=> "Erhaltungsgroesse durch" #[@erh].
$
= Beispiele
#example[
MP im Kegel.
Hier gilt fuer die Zwangsbedingung
$
(partial g_(alpha) ) / (partial t) = 0 => (partial x_(n) ) / (partial t) = 0 \
=> (partial L) / (partial t) = 0 => E = T + V.
$
]
#example[
Perle auf rotierendem Draht.
Der Draht rotiert in der Ebene mit
$
phi = omega t , space omega = "const." \
g (x, g, t) = tan ^(-1) (y/x) - omega t = phi - omega t = 0 \
=> (partial g_(alpha) ) / (partial t) != 0 .. (alpha = 1).
$
Es gilt fuer die Trafo
$
x = r cos (omega t) \
y = r sin (omega t) \
=> x_(n) = x_(n) (q, t) \
=> L = m/2 (dot(r)^2 + omega ^2 r ^2 ) , space V = 0 \
(partial L) / (partial t) = 0 => underbrace(sum _(k) p _(k) dot(q)_(k) - L, = O) "erhalten" \
O = m dot(r) dot(r) - m/2 dot(r)^2 - m/2 omega^2 r^2 = m/2 dot(r)^2 - m/2 omega^2 r^2
$
]