This commit is contained in:
2025-05-22 11:48:37 +02:00
parent c34ad20166
commit 6dc2fcf4df
22 changed files with 1824 additions and 25 deletions

169
S2/AnaMech/VL/AnMeVL9.typ Normal file
View File

@@ -0,0 +1,169 @@
// Main VL template
#import "../preamble.typ": *
// Fix theorems to be shown the right way in this document
#import "@preview/ctheorems:1.1.3": *
#show: thmrules
// Main settings call
#show: conf.with(
// May add more flags here in the future
num: 9,
type: 0, // 0 normal, 1 exercise
date: datetime.today().display(),
//date: datetime(
// year: 2025,
// month: 5,
// day: 1,
//).display(),
)
= Exkurs in die Geometrie
Zunaechst betrachten wir einen Massepunkt $m$ in $arrow(r) in RR^(3) $.
Wir kennen die kartesischen Raumkoordinaten.
Der Ursprung bleibt bei der Transformation gleich.
Es gilt fuer die Basisvektoren
$
arrow(e)_(i) * arrow(e)_(j) = delta_(i j).
$
Die Koordinatentransformation muss umkehrbar sein in fast jedem Punkt
$
x_(i) = x_(i) (q_1, q_2, ..., q_n ).
$
Theoretische Physik geht los wenn alle griechischen Buchstabe fuer Indizes verbraucht sind.
$
arrow(r) = underbrace(x_(i) arrow(e)_(i), forall P) = x_(i) (q_1, q_2, q_3 ) arrow(e)_(i) =^(!) q_j arrow(q)_(j) <- "haengen von" P "ab".
$
Die $q_i $ Kurven koennen krummlinieg verlaufen. Die Basisvektoren im Punkt $P$ sind gegeben durch
$
arrow(q)_(i) = (partial arrow(r) (p)) / (partial q_i) , arrow(r) = x_(i) (q_1, q_2, q_3) arrow(e)_(i), \
arrow(q)_(i) = (partial x_(j) ) / (partial q_i ) arrow(e)_(arrow(j)) , arrow(e)_(i) = (partial q_j ) / (partial x_(i) ) arrow(q)_(j).
$
In fast jedem Punkt sind diese linear unabhaengig. Dreibein ${arrow(q)_(1) , arrow(q)_(2) , arrow(q)_(3) }$.
#example[
Kugelkoordinaten.
$
x_1 = r cos phi sin theta \
x_2 = r sin phi sin theta \
x_3 = r cos theta \
r >0 , space theta in [0, pi] , space phi in [0, 2 pi)
$
Durch Ableiten kann so das Dreibein gebildet werden. Dieses erfuellt die gefordeten Eigenschaften von linearer Unabhaengigkeit.
]
Es gilt
$
d arrow(r) &= (partial arrow(r)) / (partial r) d r + (partial arrow(r)) / (partial theta) d theta + (partial arrow(r)) / (partial phi) d phi ==> d arrow(r) * d arrow(r) = d^2 r + r^2 d^2 theta + r^2 sin^2 theta d^2 phi \
&= d x_1 arrow(e)_(2) + d x_2 arrow(e)_(2) + d x_3 arrow(e)_(3).
$
= Metrischer Tensor
Wird auch metrisches Dings genannt.
Es gilt
$
g_(i j) &= arrow(g)_(i) * arrow(g)_(j), \
g_(i j) &= mat(
1, 0, 0;
0, r^2 , 0;
0, 0, r^2 sin^2 theta;
), \
g_(i j) &= (partial x_m ) / (partial q_i ) arrow(e)_(m) * (partial x_k ) / (partial q_(j) ) arrow(e)_(k) = (partial x_(m) ) / (partial q_(i) ) (partial x_(k) ) / (partial q_(j) ) underbrace(arrow(e)_(m) * arrow(e)_(k), = delta_(m k) ) = (partial x_k ) / (partial q_i ) (partial x_k ) / (partial q_j ).
$
= Bewegungsgleichung fuer $q_i $
Hier sind $dot(q)_(j)$ die verallgemeinerten Geschwindigkeiten.
Berechne
$
dif / (dif t) T = m dot(x)_(i) dot.double(x)_(i) \
T = m/2 dot(arrow(r)) * dot(arrow(r)) = m/2 dot(x)_(i) dot(x)_(i) \
dot(arrow(r)) (t) = (partial arrow(r)) / (partial q_(j) ) dot(q)_(j) = dot(q)_(j) arrow(g)_(j) , space dot(q)_(j) "verallgemeinerte Geschwindigkeiten" \
(partial dot(arrow(r))) / (partial dot(q)_(j) ) = arrow(g)_(i); quad arrow(g)_(i) = (partial arrow(r)) / (partial q_(i) ) \
arrow(r) = x_(i) arrow(e)_(i) \
(dif arrow(r)) / (dif t) = dot(x)_(i) arrow(e)_(i) = (partial x_(i) ) / (partial q_j ) dot(q)_(j) arrow(e)_(i) = (partial arrow(r)) / (partial q_(j) ) dot(q)_(j).
$
Wir starten von Newton II
$
m dot.double(arrow(r)) = arrow(f) \
<==> m arrow(e)_(i) * dot.double(arrow(r)) = arrow(e)_(i) * arrow(f) \
m dot.double(x)_(i) = f_(i) , i = 1,2.3.
$
Jetzt werden beliebige Koordinaten gewaehlt
$
m arrow(g)_(i) * dot.double(arrow(r)) = arrow(g)_(i) * arrow(f) \
<==> m (arrow(g)_(i) * dot.double(arrow(r)) + dot(arrow(g))_(i) * dot(arrow(r))) = arrow(g)_(i) * arrow(f) + m dot(arrow(g))_(i) * dot(arrow(r)) \
<==> m dif / (dif t) (arrow(g)_(i) * dot(arrow(r))_(i) ) = arrow(g)_(i) * arrow(f) + m dot(arrow(r)) * (partial dot(arrow(r))) / (partial q_(i) ) \
<==> m partial / (partial t) ((partial dot(arrow(r))_(i) ) / (partial q_(i) ) * dot(arrow(r))_(i) ) = arrow(g)_(i) arrow(f) + m dot(arrow(r))* (partial dot(arrow(r))) / (partial q_(i) )
$
Nebenrechung
$
dot(arrow(g))_(i) = dif / (dif t) (partial arrow(r)) / (partial q_(i) ) = partial / (partial q_(j) ) ((partial arrow(r)) / (partial q_(i) ) )dot(q)_(j) \
= (partial ^2 arrow(r)) / (partial q_(j) q_(i) ) dot(q)_(j) partial / (partial q_(i) ) ((partial arrow(r)) / (partial q_(j) ) dot(q)_(j) ) = partial / (partial q_i ) dot(arrow(r)) "und" arrow(q)_(i) = (partial dot(arrow(r))) / (partial dot(q)_(i) ) = (partial arrow(r)) / (partial q_(i) )
$
Betrachtung der kinetischen Energie
$
T = T (dot(x)_(1) , dot(x)_(2) , dot(x)_(3) ) = T (q_1, q_2, q_3, dot(q)_(1) , dot(q)_(2) , dot(q)_(3) ) \
==> dif / (dif t) ((partial T) / (partial dot(q)_(i) ) ) = (partial T) / (partial q_(i) ) + arrow(g)_(i) * arrow(f).
$
Allgemein gilt fuer die Produktregel
$
(partial T) / (partial dot(q)_(j) ) = m/2 ((partial dot(x)_(i) ) / (partial dot(q)_(j) ) dot(x)_(i) + dot(x)_(i) (partial dot(x)_(i) ) / (partial dot(q)_(j) ) ).
$
Skalarprodukt ist eine Projektion.
Verallgemeinere die kinetische Energie
$
T &= m/2 dot(arrow(r))^2 = m/2 (dot(x)_(i) * dot(x)_(i) ) = m/2 (dot(q)_(i) arrow(g)_(i) ) * (dot(q)_(j) arrow(g)_(j)) = m/2 dot(q)_(i) dot(q)_(j) space arrow(g)_(i) * arrow(g)_(j) \
&= m/2 sum_(i,j) g_(i j) dot(q)_(i) dot(q)_(j), \
&g_(i j) = g _(i j) (q_1, q_2, q_3 ).
$
= Konservative Kraftfelder
Betrachte die Kraft mit $V = V (x_1, x_2, x_3 ) = V (x_1 (q_1, q_2, q_3), ...) = V (q_1, q_2, q_3 )$ und der Lagrangefunktion als $L (q_1, q_2, q_3, dot(q)_(1) , dot(q)_(2) , dot(q)_(3) ) := T (q_(i) , dot(q)_(i) ) - V (q_(i) )$
$
arrow(f) (arrow(r)) = - arrow(nabla) V (arrow(r)) = - (partial V) / (partial arrow(r)) \
arrow(f) * arrow(g)_(i) = - (partial V) / (partial arrow(r)) * (partial arrow(r)) / (partial q_(i) ) = - (partial V) / (partial x_(j) ) (partial x_(j) ) / (partial q_(i) ) = - (partial V) / (partial q_(i) ) \
==> dif / (dif t) ((partial T) / (partial dot(q)_(i) ) ) - (partial T) / (partial q_(i) ) + (partial V) / (partial dot(q)_(i) ) =^(!) 0 \
V = V (q_1, q_2, q_3 ) ==> (partial V) / (partial dot(q)_(i) ) = 0 \
==> dif / (dif t) (partial L) / (partial dot(q)_(i) ) - (partial L) / (partial q_(i) ) = 0
$
Diese Lagrangegleichung der II Art ist
- Forminvariant
- Nicht messbar
- Nicht eindeutig
Das meschanische System ist so definiert durch $q_(i) "und" L$.
Der *verallgemeinerte Impuls* ist gegeben durch
$
p_(i) := (partial L) / (partial dot(q)_(i) ).
$
Eine *zyklische verallgemeinerte Koordinate* $q_(i) $ erfuellt
$
(partial L) / (partial q_(i) ) = 0 ==> dif / (dif t) (partial L) / (partial dot(q)_(i) ) = 0 <==> (dif p_(i) ) / (dif t) = 0 <==> p_(i) "erhalten"
$