commit 330d4d931df8cc48fd7e0ca572b1fbd5dc2107da Author: Jonas Hahn Date: Wed Apr 16 10:50:38 2025 +0200 init diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..b931492 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +__pycache__/ +typst/ diff --git a/README.md b/README.md new file mode 100644 index 0000000..e69de29 diff --git a/S1/AGLA/Hausaufgaben/Zettel02.typ b/S1/AGLA/Hausaufgaben/Zettel02.typ new file mode 100644 index 0000000..09b079c --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel02.typ @@ -0,0 +1,184 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "2") + += Aufgabe 1 + +Abgabe in Papierform. + +// TODO Weiterschreiben der ersten Aufgabe wenn alles andere gut ist + +//Für $1 <= i < j <= n$ ist $tau_(i j)$ durch $tau_i j(l) = l$, falls $l in.not {i, j}$ sowie $tau_(i j) (i) = j$ und $tau_(i j)(j) = i$ ein Element von $S_n$ definiert. Zeigen Sie: $ angle.l {tau_(i j) : 1 <= i < j <= n} angle.r = S_n $ +// +//Hinweis: Wie würden Sie ein Bücherregal sortieren. +// +//Da $S_n$ genau alle bijektiven Abbildungen der Menge $N = {1, 2, 3, ..., n}$ auf sich selbst enthaelt und $tau_(i, j) in S_n$ ist $tau_(i j)$ bijektiv. +// +//Fuer $G := angle.l{tau_(i j) : 1 <= i < j <= n}angle.r$ gelten die Gruppenaxiome. +//Also ist $i d_N$ Element der Gruppe als neutrales Element. $tau_(i j)^2$ ist das inverse Element der Gruppe. +// +// +//Jede Verknuepfung von bijektiven Abbildungen auf eine Gruppe $G$ ist wieder eine bijektive Abbildung auf $G$. Daher ist $angle.l {tau_(i j) : 1 <= i < j <= n} angle.r subset S_n$ +// +//Nun gilt es zu zeigen, dass $S_n subset angle.l { tau_(i j) : 1 <= i < j <= n}angle.r$. Also, dass $ forall f in S_n: f in angle.l{ tau_(i j) : 1 <= i < j <= n}angle.r $ +// +//Der Defintionsbereich von $f in S_n$ und $g in G$ ist identisch. Es bleibt also zu zeigen, dass $ forall f in S_n exists g in G: f(N) = g(N) $ +// +//Stets laesst sich $g$ wie folgt konstruieren: +// +//Sei $g_0 = id_N$. Fuer das kleinste $n_k$ mit $f(n_k) != n_k$ kann man stets $g_1 = tau_(g_0 (n_k) f (n_k)) compose g_0$ konstruieren, da $tau_(i j) = tau_(j i)$. +// +//Man erhaelt nun also $f(n) = g_1 (n)$ + += Aufgabe 2 + +Sei $G$ eine beliebige Untergruppe der ganzen Zahlen $(ZZ, +)$. Zeigen Sie, dass eine ganze Zahl $n >= 0$ mit $G = n Z$ existiert. + +Hinweis: Jede nicht-leere Teilmenge der natürlichen Zahlen hat ein kleinstes Element. + +Sei $G$ eine beliebige Untergruppe der ganzen Zahlen $(ZZ, +)$. + +Falls $G$ eine triviale Untergruppe ist, dann liefert $n = 0$ bzw. $n = 1$ die Loesung. + +Da $G$ nun eine nicht-leere Untergruppe ist, enthält $G$ mindestens ein Element ungleich Null. +Da $G$ eine Gruppe unter der Addition ist, enthält $G$ auch entsprechende inverse Elemente, wenn es positive enthält. +Wir betrachten die Menge $G sect NN = S$, also die positiven Elemente, die in $G$ liegen. +Nach dem Hinweis hat jede nicht-leere Teilmenge der natürlichen Zahlen ein kleinstes Element. +Sei $d$ das kleinste Element, das in $S$ enthalten ist. + +Jetzt zeigen wir, dass $G = d ZZ$. + +Wenn $s$ ein beliebiges Element in $S$ ist, können wir $s$ in der maximal gekuerzten Form $s = k d + r$ schreiben, wobei $0 <= r < d$ und $k in ZZ$. +Aus der Gruppeneigenschaft von $G$ ist $r in G$, da $r = s - k d$ und $s, k d in G$. +Da $d$ das kleinste Element in $S$ ist, muss $r$ gleich Null sein, sonst würde $0 < r < d$, was im Widerspruch zu unserer Annahme, dass $d = min(S)$ ist, wäre. +Somit haben wir $s = k d$, was zeigt, dass $S$ von $d$ erzeugt wird. + +Da $s$ beliebig war, folgt $S = d ZZ$. + +Daher existiert eine ganze Zahl $n >= 0$, sodass $G = n ZZ$, da G alle Elemente von S und deren Inverse enthaelt. + +$qed$ + += Aufgabe 3 + +Eine ausfuerliche Begruendung warum der angesprochene Isomorphismus existiert steht auf der Abgabe in Papierform. + + +1. Wie viele verschiedene Gruppen mit 4 Elementen gibt es? + +Es gibt zwei Gruppen. Namentlich die Klein-4-Gruppe und die zyklische $Z_4$ Gruppe. +Jede weitere Gruppe mit $|G| = 4$ ist isomorph zu einer dieser beiden Gruppen. + +#stack( + dir: ltr, + table( + columns: 5, + [*$Z_4$*], [*0*], [*1*], [*2*], [*3*], + [*0*], [0], [1], [2], [3], + [*1*], [1], [2], [3], [0], + [*2*], [2], [3], [0], [1], + [*3*], [3], [0], [1], [2], + ), + + h(10pt), + + table( + columns: 5, + [*$K_4$*], [*0*], [*1*], [*2*], [*3*], + [*0*], [0], [1], [2], [3], + [*1*], [1], [0], [3], [2], + [*2*], [2], [3], [0], [1], + [*3*], [3], [2], [1], [0], + ), + +) + + +2. Wie viele verschiedene Gruppen mit 6 Elementen gibt es? + +Es gibt zwei Gruppen. Namentlich die zyklische $Z_6$ Gruppe und die $S_3$ Gruppe. +Jede weitere Gruppe mit $|G| = 6$ ist isomorph zu einer dieser beiden Gruppen. + + +#stack( + dir: ltr, + table( + columns: 7, + [*$Z_6$*], [*0*], [*1*], [*2*], [*3*], [*4*], [*5*], + [*0*], [0], [1], [2], [3], [4], [5], + [*1*], [1], [2], [3], [4], [5], [0], + [*2*], [2], [3], [0], [1], [0], [1], + [*3*], [3], [4], [5], [0], [1], [2], + [*4*], [4], [5], [0], [1], [2], [3], + [*5*], [5], [0], [1], [2], [3], [4], + ), + h(10pt), + + table( + columns: 7, + [*$S_3$*], [*0*], [*1*], [*2*], [*3*], [*4*], [*5*], + [*0*], [0], [1], [2], [3], [4], [5], + [*1*], [1], [2], [0], [4], [5], [3], + [*2*], [2], [0], [1], [5], [3], [4], + [*3*], [3], [5], [4], [0], [2], [1], + [*4*], [4], [3], [5], [1], [0], [2], + [*5*], [3], [4], [5], [0], [1], [2], +)) + +3. Finden Sie alle Normalteiler der Permutationsgruppe $S_3$. + +Sei $S_3 = {e, (12), (13), (23), (123), (132)} = G$ + +Nach Lagrange gilt $|G| = |G slash H||H|$. Da $|G| = 6$ muss $|H| in {1, 2, 3, 6}$. +Kandidaten fuer Normalteiler sind somit die trivialen Untergruppen ${e}, G$ und ${(12), e}, {(13), e}, {(23), e}, {e, (123), (132)}$ + +Die trivialen Untergruppen sind immer ein Normalteiler. +Sei $H$ eine Untergruppe von $G$ mit $|H| = 2$. Dann kann H kein Normalteiler von $G$ sein, da eine Spiegelung nicht kommutativ ist mit einer anderen Spiegelung ist. + +$A_3$ ist ein Normalteiler, da eine Spiegelung und dann eine Drehung des Dreiecks gleich zu einer Drehung in die andere Richtung und dann der Spiegelung ist. + +Eigenschaft eines Normalteilers: $g H = H g$ + +Die Normalteiler sind somit: + +- ${e}$ +- $A_3 = {e, (123), (132)}$ +- $S_3 = G$ + += Aufgabe 4 + +// Schritte der Argumentation +// +// - Gitter begruenden +// - Jede Zelle ist zueneinander symetrisch +// - Falls ein Punkt in dieser Zelle liegt, dann auch in der am Urspung (durch Gruppeneigenschaft) +// - Die Zelle hat die Form eines Parralelogramms +// - Jeder Punkt in einem Parralelogramm hat einen kleineren Abstand zu einem der Eckpunkte als die groesste Seitenlaenge (Siehe Lemma L1) +// + +Laut Vorlesung ist $Z^2 = {(x, y) : x, y ∈ ZZ}$ eine Gruppe. Sei $U ⊂ Z^2$ eine nicht triviale Untergruppe. In dieser gibt es ein Element $v != 0$ mit minimalem Abstand zum Ursprung $(0, 0)$. Angenommen $⟨v⟩ != U$. Dann gibt es ein weiteres Element $0 != w in U$, dass nicht in $⟨v⟩$ enthalten ist und minimalen Abstand zum Ursprung hat. Zeigen Sie, dass $⟨{v, w}⟩= U$ ist. + +Hinweis: Der Abstand von $(x, y)$ zum Ursprung ist $ sqrt(x^2 + y^2 )$. + +Sei $a = vec(a, b)$ ein beliebiges Element von $U$. Nun gilt es zu zeigen, dass $a = z_1 v + z_2 w$ (Darstellung durch Linearkombination von $v, w$) gilt, wobei $z_1, z_2 in ZZ$. + +Zuerst laesst sich feststellen, dass $v$ und $w$ linearunabhaengig voneinander sein muessen, da sonst nach dem Argument aus Aufgabe 2 die Annahme, dass $v, w$ minimalen Abstand vom Ursprung haben und $w in.not angle.l v angle.r$, ein Widerspruch erzeugen wuerde. + +Angenommen $a in.not angle.l v, w angle.r$. Dann liegt $a$ in einem durch $v$ und $w$, ausgehend von einem Punkt $p in angle.l v, w angle.r$, aufgespanntem Parralelogramm. Dies folgt aus der Gitterstuktur von $U$, welche durch Kombination von $w$ und $v$ erzeugt wird. Da $a$ ein Element der Untergruppe $U$ ist, existiert $a'$ auch in dem Parralelogramm welches ausgehend vom Ursprung durch $v$ und $w$ aufgespannt wird. Die beiden Parralelogramme und die relativen Positionen von $a, a'$ sind hier, wider durch die Gruppeneigenschaft, identisch. + +/// Geometrisches Lemma fuer Punkte in einem Parralelogramm ////////////////////////// +Nun wird folgendes Lemma gezeigt: + +Jeder Punkt in einem Parralelogramm hat einen kuerzeren Abstand zu einem der vier Punkte, welche es aufspannen, als $max(a, b)$ wobei $a, b$ die Seitenlaengen sind. + +Fuer den Beweis laesst sich feststellen, dass um jeden Eckpunkt des Parralelogramms eine offene Kreisscheibe mit Radius $r = max(|v|, |w|)$ gelegt werden kann. Diese Kreisscheiben ueberdecken das Parralelogramm vollstaendig. Das kommt daher, dass ein Parralelogramm sich durch die verbindenden Geraden von jeweils gegenueberliegenden Eckpunkten in vier Dreieicke aufteilen laesst. +Nun liegt jedes dieser Dreiecke vollstaendig in der jeweiligen Kreisscheibe bis auf maximal zwei Eckpunkte, welche aber in einer anderen Scheibe liegen. + +Die Aussage, dass der Punkt in einer offenen Kreisscheibe um einen Eckpunkt liegt ist aequivalent zu der, welche wir zeigen wollten. +/////////////////////////////////////// + +Nach Lemma existiert ein Vektor $t$, sodass $|t| < max(|v|, |w|)$ und $a' = vec(t_x, t_y)$. Dies steht im Wiederspruch zu der Annahme, dass $v$ und $w$ die Elemente der Gruppe sind, welche den kleinsten Abstand zum Urspung haben. + +Also muss $t = 0$ gelten. Wodurch jedes Element in $U$ sich als Linarkombination von $v$ und $w$ darstellen laesst. +$qed$ + diff --git a/S1/AGLA/Hausaufgaben/Zettel03.pdf b/S1/AGLA/Hausaufgaben/Zettel03.pdf new file mode 100644 index 0000000..c96ab78 Binary files /dev/null and b/S1/AGLA/Hausaufgaben/Zettel03.pdf differ diff --git a/S1/AGLA/Hausaufgaben/Zettel03.typ b/S1/AGLA/Hausaufgaben/Zettel03.typ new file mode 100644 index 0000000..7669157 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel03.typ @@ -0,0 +1,292 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "3") + +// Aufgabe 1 += Ringe mit Addition und Multiplikation + ++ Zeigen Sie, dass + $ (ZZ slash 5 ZZ)^* := {1+ 5 ZZ, 2 + 5 ZZ, 3 + 5 ZZ, 4 + 5 ZZ} subset ZZ slash 5 ZZ $ + + $ (ZZ slash 9 ZZ)^* := {1+ 9 ZZ, 2 + 9 ZZ, 4 + 9 ZZ, 5 + 9 ZZ, 7 + 9 ZZ, 8 + 9 ZZ} subset ZZ slash 9 ZZ $ + + jeweils eine Gruppe bezueglich Multiplikation sind. + + ////////////////////////////// + Geforderte Eigenschaften an eine Gruppe: + + - Abgeschlossenheit: Das Produkt zweier Elemente muss wieder in der Gruppe sein. + + - Inverses Element: Jedes Element muss ein multiplikatives Inverses in der Gruppe haben. + + - Assoziativität: Diese Eigenschaft wird von den ganzen Zahlen vererbt. $checkmark$ + + - Neutrales Element: Es muss ein neutrales Element in der Gruppe geben. Dieses ist hier die 1. $checkmark$ + + Für $(ZZ slash 5 ZZ)^*$ gibt es durch Modulo-Rechnen folgende Elemente in der Gruppe $E = {1, 2, 3, 4}$. + + Das Produkt zweier Elemente aus $E$ ergibt wieder ein Element in dieser Menge: + + $ 1 dot 1 = 1, 1 dot 2 = 2, 1 dot 3 = 3, 1 dot 4 = 4 $ + + $ 2 dot 2 = 4, 2 dot 3 = 1, 2 dot 4 = 3 $ + + $ 3 dot 3 = 4, 3 dot 4 = 2 $ + + $ 4 dot 4 = 1 $ + + Jedes Element hat ein Inverses: + + $ 1^(-1) = 1, 2^(-1) = 3, 3^(-1) = 2, 4^(-1) = 4 $ + + Für $(ZZ slash 9 ZZ)^*$ gibt es durch Modulo-Rechnen folgende Elemente in der Gruppe $E = {1, 2, 4, 5, 7, 8}$. + + Das Produkt zweier Elemente aus $E$ ergibt wieder ein Element in dieser Menge: + + $ 1 dot 1 = 1, 1 dot 2 = 2, 1 dot 4 = 4, 1 dot 5 = 5, 1 dot 7 = 7, 1 dot 8 = 8 $ + + $ 2 dot 2 = 4, 2 dot 4 = 8, 2 dot 5 = 1, 2 dot 7 = 5, 2 dot 8 = 7 $ + + $ 4 dot 4 = 7, 4 dot 5 = 2, 4 dot 7 = 1, 4 dot 8 = 5 $ + + $ 5 dot 5 = 7, 5 dot 7 = 8, 5 dot 8 = 4 $ + + $ 7 dot 7 = 4, 7 dot 8 = 2 $ + + $ 8 dot 8 = 1 $ + + Jedes Element hat ein Inverses: + + $ 1^(-1) = 1, 2^(-1) = 5, 4^(-1) = 7, 5^(-1) = 2, 7^(-1) = 4, 8^(-1) = 8 $ + + Damit ist alles gezeigt. $qed$ + ++ Finden Sie ein Element $x in (ZZ slash 9 ZZ)^*$, sodass $angle.l {x} angle.r = (ZZ slash 9 ZZ)^*$ gilt. + + Nach Aufgabe 1a ist hat die Gruppe $(ZZ slash 9 ZZ)^*$ folgende Elemente $1, 2, 4, 5, 7, 8$. Es gilt $abs((ZZ slash 9 ZZ)^*) = 6$. + + Durch Testen jedes Elements finden wir, dass $x = 2$ die + gesamte Gruppe erzeugt, da: + $ 2^1 = 2 , quad 2^2 = 4 , quad 2^3 = 8 , quad 2^4 = 7 , quad 2^5 = 5 , quad 2^6 = 1 . $ + + Somit ist $x = 2$ ein Generator von $(bb(Z) \/ 9 bb(Z))^(\*)$, und wir haben + $angle.l 2 angle.r = (bb(Z) \/ 9 bb(Z))^(\*)$. + ++ Geben Sie einen Isomorphismus zwischen $(ZZ slash 9 ZZ, dot.op)$ und $(ZZ slash 6 ZZ, +)$ an. + + Ein Isomorphismus zwischen den Gruppen $(bb(Z) \/ 9 bb(Z) , dot.op)$ und + $(bb(Z) \/ 6 bb(Z) , +)$ kann durch die Funktion + $ phi : (bb(Z) \/ 9 bb(Z))^(\*) arrow.r bb(Z) \/ 6 bb(Z) $ gegeben + werden, wobei $phi (x)$ die Ordnung von $x$ in $(bb(Z) \/ 9 bb(Z))^(\*)$ + modulo 6 ist. + + Wählen wir nach Aufgabe 1b $x = 2$ als Generator von $(bb(Z) \/ 9 bb(Z))^(\*)$, so + laesst sich $phi$ definieren durch $ phi (2^k) = k mod 6 . $ + + Diese Zuordnung ist ein Isomorphismus, da sie bijektiv ist und die + Gruppenoperationen respektiert: + + $ phi (2^k dot.op 2^m) = phi (2^(k + m)) = (k + m) mod med 6 = phi (2^k) + phi (2^m) . $ + + Ist $(ZZ slash 5 ZZ)^∗$ auch zu einer Gruppe der Form $ZZ slash n ZZ$ für ein $n ∈ N$ isomorph? Falls ja, geben Sie einen Isomorphismus an. + + Die Gruppe $(bb(Z) \/ 5 bb(Z))^(\*)$ ist also isomorph zu + $bb(Z) \/ 4 bb(Z)$, da beide Gruppen die gleiche Ordnung haben und + zyklisch sind. + + Ein Isomorphismus zwischen $(bb(Z) \/ 5 bb(Z))^(\*)$ und + $bb(Z) \/ 4 bb(Z)$ ist durch die Abbildung + + $ phi : (bb(Z) \/ 5 bb(Z))^(\*) arrow.r bb(Z) \/ 4 bb(Z) , quad phi (1) = 0 , quad phi (2) = 1 , quad phi (3) = 3 , quad phi (4) = 2 $ + + gegeben. + + +// Aufgabe 2 += Homomorphismen + +Seien $G$ und $H$ Gruppen. Angenommen $G$ ist endlich und ihre Ordnung eine Primzahl $p$. Zeigen Sie: + ++ Jeder Homomorphismus $phi: G arrow H$ ist entweder trivial oder injektiv. + + Sei $phi.alt : G arrow.r H$ ein Homomorphismus. Da $G$ endlich und + $lr(|G|) = p$ eine Primzahl ist, gilt nach Lagrange für jede Untergruppe von $G$ + entweder $lr(|H|) = 1$ oder $lr(|H|) = p$. + + Fuer den Kern gilt: + + $ phi (e_G) = e_H ==> ker (phi) != emptyset $ + + Sei $a, b in ker (phi)$. Dann: + + $ phi (a) = e_H "und" phi (b) = e_H $ + + Da $phi$ ein Homomorphismus ist, folgt: + + $ phi (a dot b) = phi (a) dot phi (b) = e_H dot e_H = e_H $ + + Also ist $a dot b in ker (phi)$ + + Sei $a in ker (phi)$. Dann: + + $ phi (a) = e_H $ + + Da $e_H = e^(-1)_H$ folgt: + + $ phi (a^(-1)) = phi (a)^(-1)) = e_H^(-1) = e_H $ + + Da alle Eigenschaften fuer eine Untergruppe, namentlich nicht Leerheit, Abgeschlossenheit und die Existenz eines Inversen gegeben sind, ist das Kernbild des Homomorphismus, $ker (phi)$, eine Untergruppe von $G$. + + Falls $abs(ker (phi)) = G$, ist $phi$ trivial. Andernfalls ist + $lr(|ker (phi)|) = 1$, was bedeutet, dass $ker (phi) = { e }$, + das neutrale Element. + + Angenommen $phi (a) = phi (b)$ fuer beliebige $a, b in G$, dann: + + Wir betrachten das Element $a dot b^(-1) in G$ fuer beliebige $a, b in G$. + + $ phi (a dot b^(−1))=phi (a) dot phi (b^(−1)) $ + + Da $phi (a) = phi (b)$ und $phi (b^(-1)) = phi (b)^(-1)$, folgt: + + $ phi (a dot b^(−1))=phi (a) dot phi (a)^(−1) = e_H $ + + Da $a dot b^(-1)$ nun im Kern ist, aber $ker (phi) = {e}$, folgt: + + $ a dot b^(-1) = e ==> a = b $ + + Da $phi (a) = phi (b) ==> a = b$ ist $phi$ injektiv. + ++ Jeder Homomorphismus $phi: H arrow G$ ist entweder trivial oder surjektiv. + + Sei $phi : H arrow.r G$ ein Homomorphismus. Da $G$ die + Ordnung $p$ hat, ist jede echte Untergruppe von $G$ trivial. Das + Bild $"im"(phi)$ ist nach dem selben Argument wie in 2a eine Untergruppe von $G$, daher gilt + $lr(|"im"(phi)|) = 1$ oder $lr(|"im"(phi)|) = p$. + + Falls $lr(|"im"(phi)|) = 1$, ist $phi$ trivial. Sonst ist + $lr(|"im"(phi)|) = p$, was bedeutet, dass $"im"(phi) = G$. + + Fuer surjektivitaet gilt es jetzt zu zeigen, dass + + $ ∀y∈G: ∃x∈G: ϕ(x)=y. $ + + Dabei gilt: + + $ im (phi) = G ==> forall y in G: y in im (phi) $ + + $ y in im (phi) ==> exists x in G: phi (x) = y $ + + also ist $phi$ surjektiv. + +// Aufgabe 3 += Vektorraeume I + +Wir betrachten den Vekorraum $V = RR^4$ mit den folgenden Unterraeumen: + +$ U_1 = angle.l {(0, 1, 0, 2), (1, 0, 1, 0), (-1, 0, 1, 0)} angle.r, U_2 = angle.l {(1, 0, 3, 0), (0, 1, 0, 0), (1, 3, 3, 3)} angle.r $ + ++ Bestimmen Sie $U_1 sect U_2$. + + *Loesung* in Papierform. + +// Pruefen auf lineare Unabhaengigkeit der beiden Unterraeume: +// +// $ U_1: a vec(0, 1, 0, 2) + b vec(1, 0, 1, 0) + c vec(-1, 0, 1, 0) =^! 0 $ +// +// $ U_2: a vec(1, 0, 3, 0) + b vec(0, 1, 0, 0) + c vec(1, 3, 3, 3) =^! 0 $ +// +// Das Loesen mithilfe eines CAS liefert nur die triviale Loesung. +// +// Da jeweils alle drei Vektoren voneinander linear unabhaengig sind, koennen wir keinen verwerfen. +// +// Aufstellen des Gleichungssystems: +// +// $ mat(0, 1, -1, -1, 0, -1, 0; +// 1, 0, 0, 0, -1, -3, 0; +// 0, 1, 1, -3, 0, -3, 0; +// 2, 0, 0, 0, 0, -3, 0) $ +// +// Loesen durch ein CAS ergibt folgenden Loesungsvektor: +// +// $ X = vec(3/2 b, 2 a+2 b, a+b, a, -3/2 b, b) $ +// +// Einsetzen in die Gleichung von $U_2$ oder $U_1$ gibt: +// +// $ a vec(1, 0, 3, 0) + b vec(2, 3, 6, 6) $ +// +// Also gilt: +// +// $ U_1 sect U_2 = angle.l {(1, 0, 3, 0), (2, 3, 6, 6)} angle.r $ + ++ Ist $U_1 union U_2 = V$? + + //TODO + *Loesung* in Papierform. + +// Aufgabe 4 += Vektorraeume II + ++ Zeigen Sie, dass die Menge + $ V = {(x_1, x_2, x_3) in QQ^3: 7x_1 + 2x_2 - 3x_3 = 0} $ + ein Untervektorraum von $QQ^3$ ist. + + Sei $V = { (x_1 , x_2 , x_3) in bb(Q)^3 : 7 x_1 + 2 x_2 - 3 x_3 = 0 }$. + Um zu zeigen, dass $V$ ein Untervektorraum ist, prüfen wir die drei + Bedingungen: + + $V$ ist nicht leer: Es gilt $vec(0, 0, 0) in V ==> V != emptyset$. + + Abgeschlossenheit unter Addition: + Fuer $arrow(v) = (x_1 , x_2 , x_3) in V$ und + $arrow(w) = (y_1 , y_2 , y_3) in V$ gilt: + $ 7 (x_1 + y_1) + 2 (x_2 + y_2) - 3 (x_3 + y_3) = (7 x_1 + 2 x_2 - 3 x_3) + (7 y_1 + 2 y_2 - 3 y_3) = 0 , $ + also ist $arrow(v) + arrow(w) in V$. + + Abgeschlossenheit unter skalarer Multiplikation: + Fuer $arrow(v) = (x_1 , x_2 , x_3) in V$ und $lambda in bb(Q)$ gilt: + $ 7 (lambda x_1) + 2 (lambda x_2) - 3 (lambda x_3) = lambda (7 x_1 + 2 x_2 - 3 x_3) = 0 , $ + also ist $lambda arrow(v) in V$. + + Restliche Eigenschaften, wie die Assoziativitaet oder Kommutativitaet werden vom Koerper der rationalen Zahlen $QQ$ vererbt. + + Da sonst alle drei Bedingungen erfüllt sind, ist $V$ ein Untervektorraum von + $bb(Q)^3$. + + ++ Zeigen Sie, dass $V = angle.l {(2, -7, 0), (0, 3, 2), (1, 1, 3)} angle.r$ ist. + + *Loesung* in Papierform. + +// Damit $V$ durch die drei Vektoren $r = vec(2, -7, 0), v = vec(0, 3, 2), w = vec(1, 1, 3)$ vollstaendig aufgespannt wird muessen die Vektoren Elemente von V sein. +// +// // Was wenn V nur 2dimensional ist? +// +// Fuer $r: 7 dot 2 + 2 dot -7 - 3 dot 0 = 14 - 14 = 0$ +// +// Fuer $v: 7 dot 0 + 2 dot 3 - 3 dot 2 = 0 + 6 - 6 = 0$ +// +// Fuer $w: 7 dot 1 + 2 dot 1 - 3 dot 3 = 7 + 2 - 9 = 0$ +// +// Es gilt also $r, v, w, in V$. +// +// Da $w$ linear abhaengig von $v$ und $r$ ist muessen wir diesen nicht betrachten. Berechnen des Kreuzproduktes von $v$ und $r$ liefert: +// +// $ v times r = vec(7, 2, -3) $ +// +// Deshalb wird die Gesamte Ebene $V$ durch die Vektoren aufgespannt. + + + ++ Ist die Menge + + $ W = {(x_1, x_2, x_3) in QQ^3: 7x_1 + 2x_2 - 3x_3 = 1} $ + + ein Untervektorraum von $QQ^3$? + + Zuerst pruefe ich ob das neutrale Element in $W$ enthalten ist durch einsezten von $vec(0, 0, 0)$ in das Aussonderungsaxiom der Menge: + + $ 7 dot 0 + 2 dot 0 - 3 dot 0 = 0 != 1 $ + + So kann $W$ kein Untervektorraum von $QQ^3$ sein, da diese Menge kein neutrales Element enthaelt. + \ No newline at end of file diff --git a/S1/AGLA/Hausaufgaben/Zettel04.typ b/S1/AGLA/Hausaufgaben/Zettel04.typ new file mode 100644 index 0000000..8f943e1 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel04.typ @@ -0,0 +1,226 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "4") + += Basis von Vektorraeumen + +Sei $V$ ein $RR$-Vektorraum und $b_1, b_2, b_3, b_4$ eine Basis von $V$. Definiere + +$ v_1 = b_1 + 2b_2 + b, $ +$ v_2 = 2b_1 + b_3 + b_4 , $ +$ v_3 = b_1 + b_2 + b_3 + b_4 , $ +$ v_4 = b_2 + b_3 + b_4 , $ +$ w = 2b_1 − b_3 . $ + ++ Zeigen Sie, dass $v_1, v_2, v_3, v_4$ eine Basis von $V$ ist. + + *Abgabe in Papierform.* + +// Jede Basis von $V$ kann durch Kombination von $v_i$ dargestellt werden. +// +// $ b_1 = v_3 - v_4 \ +// b_2 = v_4 - v_2 + 2 b_1 \ +// b_3 = v_4 - b_2 - b_4 \ +// b_4 = v_1 - b_1 - 2 b_2 $ +// +// Es gilt $dim(V) = 4$. Angenommen, $dim(angle.l v_1, v_2, v_3, v_4 angle.r) = n != dim(V)$. Falls $n > dim(V)$, dann steht dies im Widerspurch zu der Annahme, dass $v_i$ nur durch 4 Basisvektoren konstruiert werden koennen. +// +//TODO Zweiter FALL +// + + + ++ Definiere die beiden Unterräume $U_1 = ⟨{v_1, v_2, v_3}⟩$ und $U_2 = ⟨{v_4, w}⟩$. + + Bestimmen Sie jeweils eine Basis von $U_1 ∩ U_2$ und $U_1 + U_2$. + + *Abgabe in Papierform.* + //$A = U_1 + U_2 := {a, b: a in U_1, b in U_2}$ + + //$BB_A = {v_1, v_2, v_3, v_4, w}$, da alle 5 Vektoren linear unabhaengig sind. + + //$B= U_1 sect U_2$ + + //Aufstellen einer Matrix: + + //$ mat(2, 0, 1, 2, 1, 0; 0, 1, 1, 0, 2, 0; -1, 1, 1, 1, 0, 0; 0, 1, 1, 1, 1, 0) $ + + //Dies ergibt folgenden Loesungsvektor: + + //$ X = vec(1, 1, -1, 1, 1) $ + + //Also folgt: $BB_B = {(2, 1, 0, 1)}$ + + += Lineare Unabhaengigkeit + +Im $QQ^4$ definieren wir die Vektoren + +$ v_1 = (1, 0, 0, 1), v_2 = (1, 2, 3, 4), v_3 = (4, 3, 2, 1), v_4 = (0, 1, 1, 0), $ + +$ w_1 = (1, 2, 1, 2), w_2 = (−1, 0, 1, 0), w_3 = (0, 1, 0, 1) "und" w_4 = (1, 1, 1, −1). $ + +Entscheiden Sie jeweils, ob die $v_i$ bzw. $w_i$ linear unabhängig sind. + +*Abgabe in Papierform.* + +//Aufstellen einer Matrix: +// +//$ M_v = mat(1, 0, 0, 1; 1, 2, 3, 4; 4, 3, 2, 1; 0, 1, 1, 0) M_w = mat(1, 2, 1, 2; -1, 0, 1, 0; 0, 1, 0, 1; 1, 1, 1, -1) $ +// +//Ermitteln der Determinanten: +// +//#image("Media/mat_v.png") +//#image("Media/mat_w.png") +// +//$therefore$ Die $v_i$ sind nicht linear unabhaengig, wohingegen die $w_i$ linear unabhaengig sind. +// += Vektorraum von Funktionen + +Sei $KK$ ein Körper und $V$ der Vektorraum aller Funktionen $f : KK → KK$. + +Definiere $U_1 = {f ∈ V | f (x) = f (−x)}$ und $U_2 = {f ∈ V | f (x) = −f (−x)}$. + ++ Zeigen Sie, dass $U_1$ und $U_2$ Unterräume von $V$ sind. + + Ein Unterraum $U subset.eq V$ braucht drei Eigenschaften: + + 1. $f (x) = 0 in U$ . + 2. $f , g in U: f + g in U$. + 3. $f in U, lambda in K: lambda f in U$. + + == $U_1 = { f in V divides f (x) = f (- x) }$ + + Nullfunktion: $f (x) = 0$ gehört zu $U_1$, da $0 = 0, quad forall x in K$ gilt. + + Abg. unter Addition: Für $f , g in U_1$ gilt: + + $ (f + g) (x) = f (x) + g (x) $ + + $ (f + g) (- x) = f (- x) + g (- x) $ + + $ therefore f (x) = f (- x) and g (x) = g (- x) &==>^(#[@sum1, @sum2]) (f + g) (x) = (f + g) (- x) \ + &<==>^("Def.") f + g in U_1 $ + + Abg. unter sk. Mult. : Für $f in U_1$ und $lambda in K$ gilt: + + $ (lambda f) (x) = lambda f (x) $ + + $ (lambda f) (- x) = lambda f (- x) $ + + $ therefore f(x ) = f(-x) ==> (lambda f) (x) = (lambda f) (- x) <==> lambda f in U_1 $ + + Damit ist $U_1$ ein Unterraum. + + == $U_2 = { f in V divides f (x) = - f (- x) }$ + + Nullfunktion: $f (x) = 0$ gehört zu $U_2$, da $0 = - 0, quad forall x in K$ gilt. + + Abg. unter Addition: Für $f , g in U_2$ gilt: + + $ (f + g) (x) = f (x) + g (x) $ + + $ (f + g) (- x) = f (- x) + g (- x) $ + + $ f (x) = - f (- x) and g (x) = - g (- x) $ + + $ therefore (f + g) (- x) = - f (x) - g (x) = - (f (x) + g (x)) = - (f + g) (x) <==> f + g in U_2 $ + + Abg. unter sk. Mult.: Für $f in U_2$ und $lambda in K$ gilt: + + $ (lambda f) (x) = lambda f (x) $ + + $ (lambda f) (- x) = lambda f (- x) $ + + $ f (x) = - f (- x) $ + + $ therefore (lambda f) (- x) = - lambda f (x) = - (lambda f) (x) <==> lambda f in U_2 $ + + Damit ist $U_2$ ein Unterraum. + +//////////////////////////////////////////////////// + ++ Angenommen in $KK$ gilt $-1 != 1$. Zeigen Sie, dass $V = U_1 ⊕ U_2$ ist. + + Die Bedingung $V = U_1 xor U_2$ bedeutet: + + $V = U_1 + U_2 <==> f = f_1 + f_2, f_1 in U_1 and f_2 in U_2$. + + + + $U_1 sect U_2 = { 0 }$ + + Für $f in V$, definiere: + + $ f_1 (x) = frac(f (x) + f (- x), 2) , quad f_2 (x) = frac(f (x) - f (- x), 2) . $ + + Es gilt: + + $ f_1 (- x) = frac(f (- x) + f (x), 2) = frac(f (x) + f (- x), 2) = f_1 (x) ==> f_1 in U_1 $ + + $ f_2 (- x) = frac(f (- x) - f (x), 2) = - frac(f (x) - f (- x), 2) = - f_2 (x) ==> f_2 in U_2 $ + + $ f_1 (x) + f_2 (x) = frac(f (x) + f (- x), 2) + frac(f (x) - f (- x), 2) = f (x) $ + + Damit ist $V = U_1 + U_2$. + + Sei $f in U_1 sect U_2$. + + Dann gilt: + + $ f (x) = f (- x) quad upright("und") quad f (x) = - f (- x) . $ + + $ f (x) = - f (x) arrow.r.double.long 2 f (x) = 0 . $ + + $ - 1 eq.not 1 <==> 0 eq.not 2 ==> f (x) = 0, forall x in K <==> f = 0 $ + + Da beide Bedingungen erfüllt sind, folgt: $V = U_1 xor U_2$. + + + + + += Polynome +Sei $KK$ ein Körper und $f ∈ K[X]$ gegeben durch + +$ f(X) = sum_(j=0)^n a_j X_j $ + +mit $n >= 1 "und" a_n != 0$. + +Zeigen Sie: Zu einem $c ∈ KK$ gibt es genau dann ein Polynom $g ∈ K[X]$ mit + +$ f = (X − c)g , $ + +wenn gilt + +$ f(c) = sum_(j=0)^n a_j c_j = 0 $ + + +// [=>] ++ Angenommen $f = (X -c)g$. Dann gilt: + + $ f(c) = (c-c)g = 0 quad checkmark $ + ++ Angenommen $f(c) = 0$. + + Sei $X = Y + c <==> Y = X - c$. + + $ f &= sum_(j=0)^n a_j (Y+c)^j $ + + Falls $Y=0$, dann gilt: + + $ f &= sum_(j=0)^n a_j c^j = 0 = 0g $ + + nach Vorraussetzung. + + Sonst gilt: + + $ f &= sum_(j=0)^n a_j (Y+c)^j = sum_(j=0)^n a_j (Y+c)^j - a_j c^j + a_j c^j \ + &= sum_(j=0)^n a_j (Y+c)^j - a_j c^j + underbrace(sum_(j=0)^n a_j c^j, f(c) = 0) $ + + Wobei in der expandierten Form von $(Y+c)^j$ nach dem Binomial Satz, jeder Summand den Faktor $Y$ entaehlt, ausser $c^j$, was sich hier aber kuerzt. + + Da jeder Summand von $f$ den Faktor $Y = X - c$ mindestens einmal enthaelt ist $f$ restlos durch $X - c$ teilbar. Damit laesst sich $f$ wie folgt schreiben: + + $ f = (X-c)g <==> g = f/(X-c) quad checkmark $ + +$qed$ + diff --git a/S1/AGLA/Hausaufgaben/Zettel05.typ b/S1/AGLA/Hausaufgaben/Zettel05.typ new file mode 100644 index 0000000..1da1c0d --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel05.typ @@ -0,0 +1,232 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "5") + += $CC$-Vektorraum + +Betrachte den $CC$-Vektorraum $V = CC^4$ und + +$ w_1 = (1, i, 0, −i), w_2 = (i, 1, 0, i), w_3 = (0, −2i, 0, i + 1) in CC^4 . $ + +Sei $W = ⟨{w_1, w_2, w_3}⟩$. Bestimmen Sie einen zu $W$ komplementären Unterraum vom $V$ und geben Sie jeweils eine Basis von $U$ und $W$ an. + +*Abgabe in Papierform*. + +//$ W_B = angle.l {w_1, w_2} angle.r $ +// +//$ U_B = angle.l {(0, 0, 1 ,0), (i - 1, 1 - i, 0, 2)} angle.r $ +// +//Es gilt: +// +//$ V = W plus.circle U $ +// +//was aus der linearen Unabhaengigkeit von den Basisvektoren von $W$ und $U$ folgt und da +// +//$ dim(V) = dim(W) + dim(U) = 4 . $ + += Komplementaere Unterraeume + +Sei $K$ ein Körper und $V$ ein K-Vektorraum mit $m$ Unterräumen $W_1, . . . , W_m ⊂V$. + ++ Zeigen Sie, dass die folgenden zwei Aussagen äquivalent sind: + + #enum(numbering: "(i)", + enum.item(1)[Es gilt $V = W_1 ⊕. . . ⊕W_m$.], + enum.item(2)[Für jedes $v ∈V$ gibt es eindeutige $w_1 ∈W_1, . . . , w_m ∈W_m "mit" v = w_1 + . . . + w_m$. ]) + + + Angenommen (i). Dann folgt: + + Also ist hier die Null auf genau eine Weise darstellbar: + + $ 0 = w_1 + w_2 + ... <==> 0 = 0 + 0 ... $ + + + Sei $v in V$. + + $ v = w_1 + w_2 + ... = w'_1 + w'_2 + ... \ + <==> 0 = (w_1 - w'_1) + (w_2 - w'_2) + ... $ + + Nach @null muss also $w_i = w'_i$, wodurch die Darstellung von $v$ eindeutig ist. + + Angenommen (ii). Dann gilt: + + $ v = w_1 + . . . + w_m <==> V = W_1 plus ... plus W_m . $ + + Sei $A(n) :<==> U = W_1 + ... + W_(n), O = W_(n+1) + ... + W_m: U plus.circle O$ + + Induktionsanfang (IA): Sei $V$ wie hier mit $n=1$ folgt: + + $ underbrace(W_1, U) plus underbrace(W_2 plus ... plus W_(m), O) = V $ + + + + + Sei nun $v in U sect O$, dann folgt: + + $ v = u_1 = o_m $ + + Da $v$ jedoch eindeutig dargestellt werden muss, folgt $u_1 = o_m = 0$. + + Also ist: + + $ U_1 sect W_m = 0 ==>^("mit" #[@comp]) U_1 plus.circle W_m $ + + + Induktionshypothese (IH): Angenommen A(n), fuer $n in N$. + + Induktionsschritt (IS): Nun gilt es zu zeigen, dass A(n+1) auch gilt. + + ... + + *Der Rest ist in Papierform* + + ++ Ist die folgende Aussage ebenfalls äquivalent zu den ersten beiden? Geben Sie einen Beweis oder ein Gegenbeispiel an. + + (iii) Es gilt $V = W_1 + . . . + W_m$ und $W_i ∩ W_j = {0}$ für alle $1 ≤i < j ≤m$. + + Gegenbeispiel: + + $ V = RR^2, quad W_1 = angle.l (0, 1) angle.r , angle.l (1, 0) angle.r, angle.l (1, 1) angle.r $ + + Dann gilt: + + $ V = W_1 + W_2 \ + sect.big W_i = 0 $ + + da $W_1$ und $W_2$ linear unabhaengig sind und sich die drei Geraden im Ursprung schneiden. + + Sei $v = (1, 1)$, dann folgt: + + $ v = w_1 + w_2 = w_3 = vec(1, 0) + vec(0, 1) = vec(1, 1) $ + + Also ist die Darstellung von $v in V$ nicht eindeutig. + += Projektionen + +Sei $K$ ein Körper und $V$ ein K-Vektorraum. +Angenommen $ϕ: V →V$ ist eine lineare Abbildung mit der Eigenschaft $ϕ ◦ϕ = ϕ$ <2b1> . + +Zeigen Sie, dass es zwei Untervektorräume $W_1, W_2 ⊂V$ mit $V = W_1 ⊕W_2$ gibt, sodass die Gleichungen $ϕ(w_1) = w_1$ für alle $w_1 ∈W_1$ und $ϕ(w_2) = 0$ für alle $w_2 ∈W_2$ gelten. + +Setze folgenden UVR von $V$: + +$ W_1 = im(phi.alt), quad W_2 = ker(phi.alt) $ + +Nun gilt fuer $v in V$: + + +$ phi.alt(phi.alt(v)) &=^(#[@2b1]) phi.alt(v) \ +<==> phi.alt(phi.alt(v)) - phi.alt(v) &= 0 \ +<==>^("lin.") phi.alt(phi.alt(v) - v) &= 0 $ + +Also folgt: + +$ k &= phi.alt(v) - v, quad k in ker(phi.alt) \ +<==> v &= phi.alt(v) - k, quad k in W_2, quad phi.alt(v) in W_1 $ + +Da $v$ beliebig war, gilt: $V = W_1 + W_2$. + +Sei $x in W_1 sect W_2$. + +Dann gilt: + +$ x in W_1 &==> phi.alt(x) = x \ + x in W_2 &==> phi.alt(x) = 0 \ + therefore x &= 0 $ + +Da $x$ beliebig war, folgt: $W_1 sect W_2 = 0$. + +Also ist $V = W_1 plus.circle W_2$. Die Eigenschaften von $phi.alt$ gelten nach Konstruktion. + +$qed$ + += Fibonacci + +Sei $V := {(a_i)_(i∈N) : a_i ∈R}$ der R-Vektorraum aller reellen Folgen. + +Wir definieren die lineare Abbildung $ϕ$ durch + +$ ϕ: V →V, (a_1, a_2, a_3, . . .) |-> (a_2, a_3, . . .) . $ + +Definiere nun + +$ psi = ϕ ◦ϕ −ϕ − id(V) . $ + ++ Bestimmen Sie die Dimension von $ker(ψ)$. + + Zuerst bestimme ich den Kern von $psi$: + + $ ker(psi) = {v in V: psi(v) = 0 <==> phi(phi(v)) - phi(v) - v = 0} $ + + Die Funktion $phi$ verschiebt alle Elemente von $v in V$ um einen Index nach links. + + Aus der Definition von $phi$ folgt, dass folgendes gelten muss: + + $ forall k in ker(psi): k_n = k_(n-1) + k_(n-2), quad n > 2 $ + + Also gilt: Damit ein $v in V$ im Kern von $psi$ liegt muessen alle Elemente durch die ersten Beiden eindeutig bestimmt sein. + + Eine moegliche Basis fuer den Kern ist: + + $ bold(b'_1) = (1, 0, a_3, a_4, ...) \ + bold(b'_2) = (0, 1, a_3, a_4, ...) $ + + Diese Basisvektoren sind linear unabhaengig und jedes Element laesst sich durch Linearkombination dieser beiden Vektoren darstellen. + + Da sich der Kern durch zwei Basisvektoren darstellen laesst, folgt: + + $ dim(ker(psi)) = 2 $ + ++ Finden Sei eine Basis $b_1, . . . , b_m$ von ker(ψ), die die Form $b_i = (α_i, α_i^2 , α_i^3 , . . .)$ für reelle Zahlen $α_1, . . . , α_m$ hat. + + Jeder Basisvektor vom Kern muss im Kern liegen, also: + + $ alpha^n = alpha^(n-1) + alpha^(n-2), quad forall n > 2 $ + + Hier waehlen wir $n=2$ o.E.d.A, da wir die Gleichung immer durch $alpha^t$ teilen koennen, da $alpha != 0$, da der Nullvektor kein Basisvektor vom Kern sein kann. + + Wir wollen also die folgende Gleichung loesen: + + $ alpha^2 - alpha - 1 = 0 $ + + Nach der Lösungsformel für die allgemeine quadratische Gleichung folgt fuer $alpha$: + + $ alpha = (1+ sqrt(5))/2, quad dash(alpha) = (1- sqrt(5))/2 $ + + Da der Kern zweidimensional ist und $bold(b_1)$ und $bold(b_2)$ linear unabhaengig sind, folgt: + + Also folgt fuer diese spezifische Basis von $ker(psi)$: + + $ bold(b)_1 = (alpha, alpha^2, alpha^3, ...), quad bold(b)_2 = (dash(alpha), dash(alpha)^2, dash(alpha)^3, ...) $ + ++ Sei die Fibonacci-Folge $(F_n)_(n∈N)$ definiert durch: $F_1 = 1, F_2 = 1, F_(n+2) = F_(n+1) + F_n$ für alle $n ∈N$. Zeigen Sie, dass $F_n ∈ker(ψ)$ liegt und schreiben Sie $(F_n)$ als Linearkombination ihrer Basis $b_1, . . . , b_m$. + + $ F_(n+2) &= F_(n+1) + F_n \ + <==> F_(n) &= F_(n-1) + F_(n-2), forall n > 2 $ + + Damit liegt $F_n$ nach @ker im Kern von $psi$. + + Wir wissen, dass $F_1 = 1$ und $F_2 = 1$, wodurch $F_((0)) = 0$ sein muesste. + Ermitteln von $c_1, c_2$, durch einsetzen in die bekannte Gleichung fuer ein Element des Kerns: + + $ 0 &= c_1 ((1+ sqrt(5))/2)^0 + c_2 ((1- sqrt(5))/2)^0 <==> c_1 = - c_2 \ + 1 &= c_1 (1+ sqrt(5))/2 + c_2 (1- sqrt(5))/2 \ + <==> 1 &= c_2 (1- sqrt(5))/2 - c_2 (1+ sqrt(5))/2 <==> 1 = (-2 sqrt(5))/2 c_2 ==> c_2 = -1/sqrt(5) \ + therefore &underline(c_2 &= -1/sqrt(5)) = - c_1 ==> underline(c_1 = 1/sqrt(5)) $ + + Also: + + $ (F_n) = 1/sqrt(5) bold(b)_1 - 1/sqrt(5) bold(b)_2 $ + ++ Bestimmen Sie eine Formel $F_n = sum^m_(i=1) c_i alpha_i^n$ , mit der die Fibonacci-Folge direkt berechnet werden kann. + + Wir wissen aus den Vorherigen Aufgabenteilen alles um eine geschlossene Form fuer die Fibonaccifolge aufzuschreiben. + + Wir muessen nur das Element der beiden Basisvektoren an $n$ Stelle ermitteln, was wir durch die Eigenschaft der Basisvektoren von Aufgabenteil b) tun koennen. + + + Also ergibt sich die geschlossene Formel als: + + #rect($ F_n = 1/sqrt(5) ((1+ sqrt(5))/2)^n - 1/sqrt(5) ((1- sqrt(5))/2)^n $) diff --git a/S1/AGLA/Hausaufgaben/Zettel06.typ b/S1/AGLA/Hausaufgaben/Zettel06.typ new file mode 100644 index 0000000..5afbcbc --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel06.typ @@ -0,0 +1,361 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "6") + +#import "@preview/pavemat:0.1.0": pavemat + += Vektorraeume + ++ Zeigen Sie, dass die Menge + + $ V := {x+y sqrt(2) | x, y in QQ} $ + + mit der Addition auf $RR$ und der durch + + $ lambda dot (x + y sqrt(2)) := lambda x + lambda y sqrt(2) $ + + definierten Multiplikation mit Skalaren zu einem Vektorraum ueber $QQ$ wird und bestimmen Sie die Dimension von $V$. + + Eigenschaften wie Distributivitaet und Assoziativitaet werden von $QQ$ vererbt. + + Seien $v, w in VV$ und $lambda in QQ$. + + $ v + w &= (a + b sqrt(2)) + (c + d sqrt(2)) \ + &= a + c + b sqrt(2) + d sqrt(2) \ + &= x + (b + d) sqrt(2) \ + &= x + y sqrt(2) in V $ + + da $a+c in QQ$ ud $b+d in QQ$. + + $ lambda dot v &= lambda dot (x + y sqrt(2)) \ + &= lambda x + lambda y sqrt(2) in QQ $ + + da $lambda x in QQ$ und $lambda y in QQ$ + + Da $1$ und $sqrt(2)$ linear unabhaengig sind (ueber $QQ$) folgt: + + $ dim(V) = 2 $ + ++ Zeigen Sie, dass $V$ mit der Multiplikation auf $RR$ ein Koerper ist. + + Es gilt zu zeigen: + + *Addition*: + + - Kommutative Addition + + _Wird vererbt_ + + - Assoziative Addition + + _Wird vererbt_ + + - Inverses der Addition + + Sei $v = a + b sqrt(2)$. + + $ v + v' = 0 => v' &= -v \ + &= -(a + b sqrt(2)) \ + &=^(#[@dist]) underline(underline(-a - b sqrt(2))) $ + + - Neutrales der Addition + + Das Neutrale ist hier $0 + 0 sqrt(2)$. + + *Multiplikation*: + + - Kommutative Multiplikation + + _Wird vererbt_ + + - Assoziative Multiplikation + + _Wird vererbt_ + + - Inverses der Multiplikation + + Sei $v = a + b sqrt(2)$. + + $ v v' = 1 => v' &= 1/v \ + &= 1/(a + b sqrt(2)) = (a - b sqrt(2))/((a + b sqrt(2))(a-b sqrt(2)))\ + &= (a - b sqrt(2))/(a^2 + 2 b^2) \ + &= underline(underline(underbrace(a/(a^2 + 2 b^2), c in QQ) - (b )/underbrace(a^2 + 2 b^2, d in QQ)sqrt(2))) $ + + + + - Neutrales der Multiplikation + + Das Neutrale ist hier $1 + 0 sqrt(2)$. + + *Distributivitaet*: + + $ (x + y sqrt(2)) (z + u sqrt(2)) &= x z + 2y u + x u sqrt(2) + z y sqrt(2) \ + &= 2y u + x z + (x u + z y)sqrt(2) \ + &= a + b sqrt(2) + $ + + Wobei $a = 2y u + x z in QQ$ und $b = x u + z y in QQ$. + + $qed$ + ++ Sei $W$ der von $1, sqrt(2), sqrt(3)$ und $sqrt(6)$ in $RR$ erzeugte $QQ$-Vektorraum. Bestimmen Sie die Dimension. Zeigen Sie, dass $W$ auch ein Vektorraum ueber dem Koerper $V$ aus Teil (b) ist. Bestimmen Sie wieder die Dimensionen. + + Unabhaengigkeit der Basen von $W$ zeigen: + + Es muss gelten (mit $a, b, c, d in QQ$ und $a b c d != 0$): + + $ a + b sqrt(2) + c sqrt(3) + d sqrt(6) = 0 \ + b sqrt(2) + c sqrt(3) = -1 dot (d sqrt(6) + a) \ + 2 b^2 + 3 c^2 + 2 b c sqrt(6) = 6 d^2 + a^2 + 2 a d sqrt(6) \ + 2 b c sqrt(6) - 2 a d sqrt(6) = - (2 b^2 + 3 c^2) + 6 d^2 + a^2 \ + sqrt(6) (2 b c - 2 a d ) = 6 d^2 + a^2 - (2 b^2 + 3 c^2) \ + sqrt(6) = (6 d^2 + a^2 - (2 b^2 + 3 c^2))/(2 b c - 2 a d ) =: l \ + $ + + damit die Basen voneinander linear unabhaengig sind. + + Da $QQ$ ein Koerper ist, gilt $l in QQ$. Somit muss $sqrt(6) in QQ$ damit die Gleichung eine Loesung hat. + + Angenommen $sqrt(6) = p/q$, wobei $p, q$ teilerfremde positive natuerliche Zahlen sind. + + Die Quadratwurzel von 6 kann keine natuerliche Zahl sein, da $4 < 6 < 9 => 2 < sqrt(6) < 3$. + + $ sqrt(6) = p/q \ + 6 q = p^2/q $ + + wobei $6 q in NN$. Es gilt $p^2/q in.not NN$, da sie teilerfremd sind $arrow.zigzag$. + + Es folgt also $sqrt(6) in.not QQ$. Also kann @lind nicht geloest werden. + + Da so $1, sqrt(2), sqrt(3)$ und $sqrt(6)$ linear unabhaengig sind (ueber $QQ$) folgt: + + $ dim(W_QQ) = 4 $ + + Wenn wir nun $V$ als unseren Koerper betrachten, dann faellt direkt auf, dass $1 "und" sqrt(2)$ nicht mehr linear unabhaengig sind, da ($a + b sqrt(2), c + d sqrt(2) in V$): + + $ a + b sqrt(2) &= (c + d sqrt(2)) sqrt(2) \ + &= 2 d + c sqrt(2) $ + + Auch sind $sqrt(3), sqrt(6)$ voneinander linear abhaengig: + + $ sqrt(3)(a + b sqrt(2)) &= sqrt(6) (c + d sqrt(2)) \ + a sqrt(3) + b sqrt(6) &= 2 d sqrt(3) + c sqrt(6) $ + + Das gleiche laesst sich auch beim Einsetzen der Eigenschaften von $v in V$ und unter Betrachtung des ersten Teilergebnisses erkennen ($lambda_i in V$): + + $ lambda_1 + lambda_2 sqrt(2) + lambda_3 sqrt(3) + lambda_4 sqrt(6) \ + <==> undershell((a_1 + a_2 sqrt(2)) + (2 b_1 + b_2 sqrt(2)), #[lin. abh.]) + undershell((c_1 sqrt(3) + c_2 sqrt(6)) + ( 2 d_1 sqrt(3) + d_2 sqrt(6)), #[lin. abh.]) $ + + Nach dem Selben Argument wie oben sind die beiden Bloecke, durch betrachten der jeweiligen Bassen, voneinander linear unabhaengig. + + Es folgt also: + + $ dim(W_V) = 2 $ + += Gleichungssystem + +Loesen Sie das folgende lineare Gleichungssystem + +$ x+y &=-1 \ +-x + y &= -1 \ +x+y -z &= 0 $ + +sowohl ueber dem koerper $QQ$ als auch ueber dem Koerper $FF_3$. + +Zuerst wird als Koerper $QQ$ angenommen. + +Umformen in eine Matrix mit Loesungsspalte: + + +$ mat(1, 0, 1, -1; -1, 1, 0, -1; 1, 1, -1, 0; augment: #(-1)) $ + +Gaussverfahren anwenden: + +#grid(columns: 4, +$ mat(1, 0, 1, -1; 0, 1, 1, -2; 0, 1, -2, 1; augment: #(-1)) $, +$ mat(1, 0, 1, -1; 0, 1, 1, -2; 0, 0, -3, 3; augment: #(-1)) $, +$ mat(1, 0, 1, -1; 0, 1, 1, -2; 0, 0, 1, -1; augment: #(-1)) $, +$ mat(1, 0, 1, -1; 0, 1, 0, -1; 0, 0, 1, -1; augment: #(-1)) $, +) + +Loesungsmatrix: + +$ mat(1, 0, 0, 0; 0, 1, 0, -1; 0, 0, 1, -1; augment: #(-1)) $ + +Es folgt also: + +$ x &= 0 \ +y &= -1 \ +z &= -1 $ + +Definiere den Koerper $FF_3 = {0, 1, 2}$. + +Betrachten Matrix (Welche mit dem Gaussverfahren bistimmt wurde): + +$ mat(1, 0, 1, -1; 0, 1, 1, -2; 0, 0, -3, 3; augment: #(-1)) $, + +Hier duerfen wir nicht durch 3 teilen, da $3 = 0$ in $FF_3$ gilt. + +Also machen wir eine Fallunterscheidung fuer $z$: + +Auch kann $z$ jeden Wert annehmen, da + +$ -3 dot 0 = 0 \ + -3 dot 1 = 0 \ + - 3 dot 2 = 0 $ + +Fall 1: ($z = 0$) + +Es muss gelten: + +$ x = -1 = 2 \ + y = -2 = 1 $ + +Fall 2: ($z = 1$) + +$ x + 1 = -1 = 2 => x = 1 \ + y + 1 = -2 = 1 => y = 0 $ + +Fall 3: ($z = 2$) + +$ x + 2 = -1 = 2 => x = 0 \ + y + 2 = -2 = 1 => y = 2 $ + + +Die Loesungsmenge ist hier also: + +$ LL = {(0, 2, 2), (1, 0, 1), (2, 1, 0)} $ + += Matrix invertieren + +Ist die Matrix $A in QQ^(4 times 4)$ mit $A = mat(1, 1, 0, 1; 0, 1, 0, 3; -1, 0, 1, 2; 0, 1, 1, 4)$ invertierbar? + +Benutzen Sie nur die Hilfsmittel die einschliesslich der Vorlesung vom 29.1 zur Verfuegung stehen. + +Bijektive Umformungen mit dem Gaussverfahren: + +#grid( + columns: 2, + row-gutter: 10pt, +$ mat(1, 1, 0, 1; + 0, 1, 0, 3; + -1, 0, 1, 2; + 0, 1, 1, 4) $, +$ mat(1, 1, 0, 1; + 0, 1, 0, 3; + 0, 1, 1, 3; + 0, 1, 1, 4) $, +$ mat(1, 1, 0, 1; + 0, 1, 0, 3; + 0, 0, 1, 0; + 0, 0, 1, 1) $, +$ mat(1, 1, 0, 1; + 0, 1, 0, 3; + 0, 0, 1, 0; + 0, 0, 0, 1) $, +$ mat(1, 1, 0, 1; + 0, 1, 0, 0; + 0, 0, 1, 0; + 0, 0, 0, 1) $, +$ mat(1, 0, 0, 0; + 0, 1, 0, 0; + 0, 0, 1, 0; + 0, 0, 0, 1) $, + ) + +Da der $A$ eine $4 times 4$ Matrix ist und einen Rank von $4$ hat, ist $A$ invertierbar. + +$qed$ + += Polynome II + +Sei $V_n := {f in K[X]: deg(f) <= n}$ die Menge der Polynome von Grad hoechstens $n$ ueber einem Koerper $K$. + ++ Zeigen Sie, dass $V_n$ ein Untervektorraum der Dimension $n+1$ von $K[X]$ ist. + + Pruefen der Eigenschaften fuer einen Unterraum: + + Abgeschlossenheit unter Addition: + + Seien $f, g in V_n$, also $deg(f), deg(g) <= n$. + + Nun gilt: + + $ deg(f+g) = max({deg(f), deg(g)}) <= n ==> f+g in V_n $ + + Abgeschlossenheit unter skalarer Multiplikation: + + Fuer $c in K$ und $c != 0$, gilt: + + $ deg(c f ) = deg(f) ==> c f in V_n $ + + Das Nullpolynom ist in $V_n$ enthalten, da + + $ deg(0) = 0 <= n, quad forall n in NN $ + + Eine Basis von $V_n$ ist gegeben durch: + + $ B_(V_n) = {X^0, X^1, X^2, ... , X^n} $ + + Diese Basis hat $n+1$ Elemenente, weshalb die gilt: + + $ dim(V_n) = n+1 $ + ++ Zeigen Sie weiter, dass die Abbildung + + $ phi: V_n -> V_(n+2), quad f |-> (X^2 + 1)f $ + + eine lineare Abbildung ist. + + Zuerst pruefen der ersten Eigenschaft: + + Seien $f, g in V_n$ und $lambda in K$. + + $ phi(f + g) &= (X^2 + 1)(f + g) \ + &= X^2 dot f + f + X^2 dot g + g \ + &= (X^2 + 1)f + (X^2 + 1)g \ + &= phi(f) + phi(g) $ + + $ lambda dot phi(f) &= lambda dot (X^2 + 1) dot f \ + &= (X^2 + 1) dot lambda f \ + &= phi(lambda f) $ + + $qed$ + + Ein Polynom kann problemlos mit einem Skalar multipliziert werden. + Auch ist die Multiplikation mit einem Anderen Polynom anderer Ordnung moeglich. + + ++ In allen $V_n$ sei die Basis $X^0, X^1, ..., X^n$ gegeben. + Ist $f=a_n X^n + ... + a_0 X^0$ und $(X^2 + 1)f = b_(n+2) X^(n+2) + ... + b_0 X^0$, dann ist durch $phi_n$ + auch eine Abbildung $Phi_n: K^(n+1) -> K^(n+3)$ mit + + $ (a_0, a_1, ..., a_n) |-> (b_0, b_1, ..., b_(n+2)) $ + + gegeben. Zeigen Sie, dass $Phi_n$ linear ist und bestimmen Sie die zugehoerige Matrix. + + Sei $f,g in V^n$ und $lambda in K$. + + $ Phi(f+g) &= Phi(f) + Phi(g) $ + $ lambda dot Phi(f) &= Phi(lambda dot f) $ + + nach dem selben Argument wie in Teil (b). + + Die zugehoerige Matrix sieht wie folgt aus: + + #{ + set text(size: 1.1em) + + pavemat( + delim: "[", + )[$ mat(1, 0, 0, 0, 0, ..., 0; + 0, 1, 0, 0, 0, ..., 0; + 1, 0, 1, 0, 0, ..., 0; + 0, 1, 0, 1, 0, ..., 0; + 0, 0, 1, 0, 1, ..., 0; + dots.v, dots.v, dots.v, dots.down, dots.down, dots.down, 0; + 0, 0, 0, 0, 1, 0, 1;) $] + } + + wobei sie $n+1$ Spalten und $n+3$ Reihen hat. + \ No newline at end of file diff --git a/S1/AGLA/Hausaufgaben/Zettel07.typ b/S1/AGLA/Hausaufgaben/Zettel07.typ new file mode 100644 index 0000000..4910fa3 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel07.typ @@ -0,0 +1,81 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "7") + += Vektorraeume + +Fuer eine Matrix $A = (a_(i j)) in K^(n times n)$ definieren wir die Reiehen- und Spaltensummen durch + +$ R_r (A) := sum^n_(i = 1) a_(r i) quad "und" quad S_s (A) := sum^n_(i = 1) a_(i s) . $ + +Sei $V$ die Menge aller $n times n$- Matrizen fuer die alle Reiehen- und Spaltensummen gleich sind. +Also + +$ V:= {A in K^(n times n):R_r (A) = S_s (A) "fuer alle" r, s = 1, ..., n} $ + ++ Zeigen Sie, dass $V$ ein Untervektorraum von $K^(n times n)$ ist. + + Seien $v, w in V$. + + Bei der Matrixaddition werden alle Reiehen und Spalten addiert. Dabei gilt: + + $ v_(i j) = c_1, quad w_(i j) = c_2 $ + + Also + + $ v_(i j) + w_(i j) = c_1 + c_2 = c => v + w in V $ + + $ lambda v = lambda v_(i j) = lambda c_1 = c => lambda v in V $ + + + ++ Bestimmen Sie die Dimension und eine Basis von $V$. + + Wir koennen alle Eintraege von $v in V$ beliebig waehlen, bis auf jeweils die letzen innerhalb einer Zeile oder Spalte. Daraus muss folgen: + + $ dim(V) = (n-1)(n-1) = (n-1)^2 $ + += Einheitsmatrix + +Sei $A in K^(n times n)$ mit der Eigenschaft, dass $A B = B A, quad forall B in K^(n times n)$ gilt. + +Zeigen Sie, dass $A = lambda E_n$ fuer ein $lambda in K$ ist. + +Hier gilt es zu zeigen, dass nur ein Vielfaches der Einheitsmatrix die Kommutativit mit einer beliebigen Matrix $B$ erfuellt. + +Sei $B = bb(1)$. Falls $A = bb(1)$ dann waehle $B != bb(1) and B != bb(0)$. + +Angenommen fuer $A$ gilt, dass $exists a_(i j): i != j: a = lambda != 0$. + +Nach Matrixmultiplikationsvorschrift ist diese nicht kommutativ $arrow.zigzag$. + +Wir wissen also, dass $A = mat(a, 0, 0, 0, ...;0, b, 0, 0, ...; 0, 0, c, 0, ...; 0, 0, 0, d, ...; dots.v, dots.v, dots.v, dots.v, dots.down)$ sein muss. + +Angenommen $a, b, c, ...$ sind ungleich. Dann laesst sich wieder durch Matrixmultiplikation ein Widerspruch erzeugen. + +Falls nun aber $a = b = c = ...$, dann ist $A = lambda E_n$. + +$qed$ + += Inverse einer Matrix + +Bestimmen Sie das Inverse der Matrix $A = mat(1, -1, 0, 1; 1, 0, -1, 1; 2, 3, -4, 1; 1, 0, 0, 1)$. + +Anwenden des Gaussverfahrens mit der Erweiterten Matrix: + +$ mat(1, -1, 0, 1, 1, 0, 0, 0; + 1, 0, -1, 1, 0, 1, 0, 0; + 2, 3, -4, 1, 0, 0, 1, 0; + 1, 0, 0, 1, 0, 0, 0, 1; augment: #4) $ + += Abbildungsmatrix + + +Sei $frak(B)_1 = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}$ eine Basis von $QQ^3$ und $frak(B)_2 = {(1,1), (-1, 1)}$ eine Basis von $QQ^2$. Sei $phi: QQ^3 -> QQ^2$ gegeben durch die Abbildungsmatrix + +$ A = mat(1, 2, 3; 4, 5, 6) $ + ++ Bestimmen Sie die Abbildungsmatrix $A'$ von $phi$ bezueglich der Basen $frak(B_1)$ und $frak(B_2)$. + ++ Nach der Vorlesung gibt es $X in Q^(3 times 3)$ und $Y in QQ^(2 times 2)$, sodass $A = X A' Y$ gilt. + Bestimmen Sie $X$ und $Y$. \ No newline at end of file diff --git a/S1/AGLA/Hausaufgaben/Zettel08.pdf b/S1/AGLA/Hausaufgaben/Zettel08.pdf new file mode 100644 index 0000000..15eb62c Binary files /dev/null and b/S1/AGLA/Hausaufgaben/Zettel08.pdf differ diff --git a/S1/AGLA/Hausaufgaben/Zettel08.typ b/S1/AGLA/Hausaufgaben/Zettel08.typ new file mode 100644 index 0000000..be8773c --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel08.typ @@ -0,0 +1,21 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "8") + += Determinanten I + +Sei $K$ ein Koerper mit $"char"(K) != 2$. + ++ Seien $A, B$ zwei $n times n$ Matrizen mit Eintraegen in $K$. Definiere $b_(i j) := (-1)^(i+j) a_(i j)$. + + Zeigen Sie, dass $A = det(B)$. + ++ Bestimmen Sie abhaengig von $n$ die Determinante der Matrix: + + $ C = mat(0, 1, ..., 1; 1, dots.down, dots.down, dots.v; dots.v, dots.down, dots.down, 1; 1, dots, 1, 0) $ + += Determinanten II + += Lineare Abbildung + += Dualraeume diff --git a/S1/AGLA/Hausaufgaben/Zettel09.typ b/S1/AGLA/Hausaufgaben/Zettel09.typ new file mode 100644 index 0000000..f0f6b21 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel09.typ @@ -0,0 +1,11 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "9") + += + += + += + += diff --git a/S1/AGLA/Hausaufgaben/Zettel10.typ b/S1/AGLA/Hausaufgaben/Zettel10.typ new file mode 100644 index 0000000..3ac9546 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel10.typ @@ -0,0 +1,11 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "10") + += + += + += + += diff --git a/S1/AGLA/Hausaufgaben/Zettel11.typ b/S1/AGLA/Hausaufgaben/Zettel11.typ new file mode 100644 index 0000000..948001e --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel11.typ @@ -0,0 +1,11 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "11") + += + += + += + += diff --git a/S1/AGLA/Hausaufgaben/Zettel12.typ b/S1/AGLA/Hausaufgaben/Zettel12.typ new file mode 100644 index 0000000..7497696 --- /dev/null +++ b/S1/AGLA/Hausaufgaben/Zettel12.typ @@ -0,0 +1,11 @@ +// Load the preamble +#import "../conf.typ": conf +#show: conf.with(week: "12") + += + += + += + += diff --git a/S1/AGLA/Vorlesungen/VL10.pdf b/S1/AGLA/Vorlesungen/VL10.pdf new file mode 100644 index 0000000..7318e52 Binary files /dev/null and b/S1/AGLA/Vorlesungen/VL10.pdf differ diff --git a/S1/AGLA/Vorlesungen/VL10.typ b/S1/AGLA/Vorlesungen/VL10.typ new file mode 100644 index 0000000..9470ba9 --- /dev/null +++ b/S1/AGLA/Vorlesungen/VL10.typ @@ -0,0 +1,30 @@ += Der Homomorphiesatz + +Seien $V, W$ VR ueber den Koerper $KK$ und $phi: V -> W$ linear mit Kern $K$. Dann ist durch + +$ Phi : V slash K -> W, quad v + K |-> phi(v) $ + +ein Isomorphismus zwischen $V slash K$ und $phi(V)$ gegeben. +df + +Lemma: + +$phi: V -> W$ linear injektiv $<==>$ $ker(phi) = {0}$. + +Es kommt nicht drauf an, welches $v$ ich waehle um eine Nebenklasse zu definieren! + +Bew: Eigenschaft Kern, und Nebenklassen von v1 und v2 + +Noch zu zeigen ist die surjektivitaet und die injektivitaet von $Phi$. + +Mit dem Umwegsargument ist Jeder Vektorraum zu jedem isomorph?? Wo scheitert das Argument. + +Nutzen der Definition von liearitaet + +FRAGEN: + +Seien V,W K-VR und phi linear was genau ist der Kern von phi?? + +Was ist eine lineare Abbildung zwischen zwei VR + + diff --git a/S1/AGLA/Vorlesungen/VL11.pdf b/S1/AGLA/Vorlesungen/VL11.pdf new file mode 100644 index 0000000..ff91903 Binary files /dev/null and b/S1/AGLA/Vorlesungen/VL11.pdf differ diff --git a/S1/AGLA/Vorlesungen/VL11.typ b/S1/AGLA/Vorlesungen/VL11.typ new file mode 100644 index 0000000..2fd418f --- /dev/null +++ b/S1/AGLA/Vorlesungen/VL11.typ @@ -0,0 +1,21 @@ +// 2024-11-26 10:19 +// + += Complex Numbers + +$ (RR^2, +), quad (a, b) dot.circle (c, d) = (a c - b d, a d + b c) $ + +Mit diesem Produkt wird $RR^2$ zum Koerper $CC$, wir verstehen $RR$ als Teil von $CC$, naemlich $(a, 0); quad (0, 1) dot (0, 1) = (-1, 0)$. + +//#grid(columns: 2, [sd], [dsf]) +// +$ (a, b) = a + ib \ + +Ist $z=x+iy, quad (x, y) in RR^2$, dann sei + + +Produkt von zwei Matrizen + + + + diff --git a/S1/AGLA/Vorlesungen/VL12.typ b/S1/AGLA/Vorlesungen/VL12.typ new file mode 100644 index 0000000..32b05da --- /dev/null +++ b/S1/AGLA/Vorlesungen/VL12.typ @@ -0,0 +1,21 @@ +- Das Objekt Matrix $A in K^(r times s)$ + +- Zeilen und Spaltenvektor sind Teil von jeder Matrix + +- Hauptdiagonale einer Matrix Nebendiagonale wenn quadratisch +- r = s <==> quadratische Matrix + += Saetze + + +Ezaine lineare Abbildung $Phi: K^s -> K^r$ ist gleichbedeutend zu einer Matrix mit s spalten und k reihen. + +bash + +$dim(L(K^s, K^r)) = rs$; und es gilt dass die Summe der linearen Abbildungen gleich des Summe der Matritzen ist. + +Es gelten folgende Rechenregeln: + +- Distributivitaet (Achtung; die Seiten sind unterschiedlich.) + + diff --git a/S1/AGLA/Vorlesungen/VL13.typ b/S1/AGLA/Vorlesungen/VL13.typ new file mode 100644 index 0000000..5f50897 --- /dev/null +++ b/S1/AGLA/Vorlesungen/VL13.typ @@ -0,0 +1,13 @@ += Matrizen + +Die Multiplikation ist im allgemeinen nicht kommutativ. + +Aufgrund der Gruppeneigenschaft, jedoch die Mult. mit der Inversen. + +Der Gauss Algorithmus ist vollstaendig reversibel. + - Rekursive Vorschrift fuer den Algo. + +$G L_n (K)$ general linear group over $K$ with $n$ rows. + +Wie schreibt man ein LGS formal richtig auf (mit der Summensschreibweisse.) + diff --git a/S1/AGLA/Vorlesungen/VL7.typ b/S1/AGLA/Vorlesungen/VL7.typ new file mode 100644 index 0000000..d458ed6 --- /dev/null +++ b/S1/AGLA/Vorlesungen/VL7.typ @@ -0,0 +1,115 @@ += Vektorraeume + +Ein Vektorraum ueber einem Koerper $K$ ist eine abelische Gruppe $(V, +)$ mit einer Abbildung $K times K arrow V$ (Mult. mit Skalaren), die die Bedingungen + +$ (lambda + mu)v = lambda v + mu v, lambda(v+w) = lambda v + lambda w | forall lambda, mu in K, v, w, in V $ +$ (lambda mu)v = lambda(mu v), 1 v = v $ + +erfuellt. + +== Bsp + +$K^n = K times ... times K = {(x_1, ..., x_j): x_j in K}, lambda (x_1, ..., x_n) = (lambda x_1, ..., lambda x_n)$ + +$RR$ ist ein $QQ$-Vektorraum + +$V_1, V_2$ seien K-Vektorraum. $V_1 times V_2 = {(v_1, v_2): v_j in V_j}$ + +$K times (V_1 times V_2) arrow V_1 times V_2, (lambda, (v_1, v)2)) arrow.flat (lambda v_1, lambda v_2). + +$(V_i)_(i in I)$ sumtlich K-Vektorraum. + +$V:= bigX_under(i in I) V_i = {f: I arrow bigU_under(i in I) V_i: f(i) in V_i} + +in V bildet + +$ W = {f: I arrow bigU_under(i in I) V_i, f(i) in V_i, f(i) != 0 nur fuer endlich viele i in I} $ + +einen Untervektorraum. Ist $I$ endlich, dann $W = V$. Sei $f, g in W$ und $I(f) = {i in I: f(i) !=0}$. + +//////////////// + +Lemma 1: Sei $V$ ein K-Vektorraum $lambda in K, v in K$. Dann ist $lambda v = 0 <==> lambda = 0 or v = 0$ + +Ist $lambda = 0$, dann benutze $0 v = (0+0)v = 0v + 0v <=> 0 = 0 v + 0v v + (-0 v) = 0 v$. Genauso: $V=0 => lambda v = 0$. + +Ist $lambda != 0$ aber $lambda v = 0$, dann $v = 11 v = lambda^(-1) (lambda v) = lambda(-1) 0 = 0 = 11 v = v$ + +$ v + (-w) = v -w $ + +/////////////// + +Lemma 2: + +$V$ ein K-Vektorraum und $lambda in K, v in V$. Kann ist $(- lambda) v = - (lambda) v = - (lambda v), wir schreiben deshalb kurz $- lambda v$ + +denn: $0 = (lambda - lambda) v = lambda v + (- lambda) v = lambda v - (lambda v)$ + +/////////// + +Mehr zu Untervektorraeumen. Gegeben $V$ ein K-Vektorraum. Hat die "tivialen Untervektorraeume" ${0}$ (Nullraum) und $V$. + + +Lemma 3: + +Ist $(W_i)_(i in I)$ eine Familie von Untervektorraeumen von $V$, dann ist $sect.bigU_under(i in I) W_i$ ein Untervektorraum. + +Idee: $M subset V$ eine beliebige Teilmenge. Dann $GrosserSchnitt (W subset V UVR; M subset W) W = angle.l M angle.r$ die von $M$ erzeugte UVR von $V$. Es ist $M subset angle.l M angle.r$ und $angle.l M angle.r$ hat kienen nicht trivialen UVR, der $M$ enthaelt. + +$v in V, M = {v}, angle.l {w} angle.r in.reverse lambda v, lambda in K$. Da die ${lambda v, lambda in K}$ + +einen Untervektorraum bilden, ist $angle.l {v} angle.r = {lambda v: lambda in K}. + +$angle.l {0} angle.r = {0}, Ist v != 0, dann gibt es eine Bijektion (Ue) + +$ K arrow angle.l {u} angle.r; lambda arrow.flat lambda v$ + +$angle.l {v, w} angle.r = {lambda v + mu w: lambda, mu in K}$ + + +Seien $W_1, W_2$ Untervektorraeume von K-Vektorraum $V$. + +$ W_1 + W_2 := angle.l W_1 union W_2 angle.r$ heisst Summe von $W_1, W_2$. +$ = {w_1 + w_2: w_j in W_j}$ + +$ lambda (w_1 + w_2) = (lambda w_1) + (lambda w_2) $ + +$ w_1 + w_2 + w_1' + w_2' = (w_1 + w_1') + (w_2 + w_2') $ + +Frage: Sei $w in W_1 + W_2$. Wie viele Darstellungen $w = w_1 + w_2, w_j in W_j$ gibt es? + +Sei $w_1 + w_2 = w_1' + w_2' <==> w_1 = w_1' = w_2 - w_2' in W_1 sect W_2$ + +Antwort: Es gibt unendlich viele Optionen?. Aber wenn $W_1 sect W_2 = {0}$, dann $w_1 = w_1', w_2 = w_2'$, also sind $w_1$ und $w_2$ eindeutig bestimmt. In diesem Fall heisst $W_1 + W_2$ die innere dierkte Summe von $W_1$ und W_2, in Zeichen $W_1 plus W_2$. + + + +Def: $M subset V$ heisst Eruzeugendensystem, wenn $angle.l M angle.r = V$. +Ist M endlich, und Eruzeugendensystem, ann heisst V endlich erzeugt. + +Bsp: $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ... , 0), ... , e_n = (0, ... , 0, 1) in K^n$ + +ist ein Eruzeugendensystem fuer $K^n$. DAnn fuer jedes v = (v_1, ..., v_n) in K^n$ ist v = v_1 e_1 + ... + v_n e_n in angle.l e_1, ... , e_n angle.r$ + +2) $M subset V$. Dann ist $M$ Eruzeugendensystem $angle.l M angle.r$ + +Def: $V$ ein K-Vektorraum, $v_1 , ... , v_n in V$ heissen linear unabhaengig, wenn aus + +$ lambda_1 v_1 + ... + lambda_n v_n = 0 => lambda_1 = ... = lambda_n = 0 . $ + +Beispiele: $n =1$ Gegeben $v in V$. Test: $lambda v = 0 =>^? lambda = 0. Weil $1 0 = 0$, ist $v=0$ nicht linear unabhaengig. Aber: $v + v != 0, "dann" lambda = 0$. Also: jedes $v != 0 $ ist linear unabhaengig. + +$n = 2$ (Ue); $v_1, v_2 in V \ {0}$. ist $v_2 in angle.l v_1 angle.r, "dann"" v_2 = lambda v_1, "also" 0 = lambda v_1 - v_2 "also" v_1, v_2 nicht linear unabhaengig. _Sonst_ schon! + +Lemma 5: + +Sei $V$ ein K-Vektorraum, und $(v_i)_(i in I)$ eine Familie von $v_i in V$. + +$(v_i)_(i in I)$ ist linear unabhaengig genau dann, wenn jedes $v in V$ hoechstens eine Darstellungen $v = sum(lambda_i v_i)'_(i in I)$ hat. + +Hier heisst $sum()'_(i in I), dass nur endlich viele $lambda_i != 0$ sind. + +Allgemeiner nennen wir $(v_i)_(i in I)$ linear unabhaengig, wenn aus $sum(lambda_i v_i)'_(i in I) = 0 "stets folgt" lambda_i = 0 forall i in I$. + +$v_1, v_2 linear unabhaengig <==> angle.l v_1 angle.r sect$ + diff --git a/S1/AGLA/Zettel/Blatt_03.pdf b/S1/AGLA/Zettel/Blatt_03.pdf new file mode 100644 index 0000000..13bf5be Binary files /dev/null and b/S1/AGLA/Zettel/Blatt_03.pdf differ diff --git a/S1/AGLA/Zettel/blatt_02.pdf b/S1/AGLA/Zettel/blatt_02.pdf new file mode 100644 index 0000000..e7b9cc9 Binary files /dev/null and b/S1/AGLA/Zettel/blatt_02.pdf differ diff --git a/S1/AGLA/conf.pdf b/S1/AGLA/conf.pdf new file mode 100644 index 0000000..9922f42 Binary files /dev/null and b/S1/AGLA/conf.pdf differ diff --git a/S1/AGLA/conf.typ b/S1/AGLA/conf.typ new file mode 100644 index 0000000..e8fb02a --- /dev/null +++ b/S1/AGLA/conf.typ @@ -0,0 +1,72 @@ +#import "@preview/problemst:0.1.0": pset + +// Adding scores to the document +#let wrapper(doc) = { + set rect(stroke: 0.3pt) + grid( + columns: (auto, auto, auto, 1fr, auto), + ..range(4).map(n => rect(width: 80pt, height: 40pt, text([A#(n+1)]))), + rect(width: 100pt, height: 40pt, text($sum$)) + ) + line(length: 100% ) + + // Reset the rect stroke + set rect(stroke: auto) + // Doc wrapper + outline() + + doc +} + + +// Configuration for the Sheets +#let conf(week: "?", doc) = { + // Global configs + set enum(numbering: "a)") + set line(stroke: 1pt) + set math.equation(numbering: "(1)") + + // Wrap the doc before passing it to the template + // Addiung score boxes + let doc = wrapper(doc) + + + // Setting the references right + show ref: it => { + let eq = math.equation + let el = it.element + if el != none and el.func() == eq { + // Override equation references. + link(el.location(),numbering( + el.numbering, + ..counter(eq).at(el.location()) + )) + } else { + // Other references as usual. + it + } +} + + // Show the template for ease of use + // Do this at last + show: pset( + class: "AGLA", + student: "Max Offermann, Tom Witjes und Jonas Hahn", + title: [Woche #week], + date: datetime.today(), + doc + ) +} + +// Configuration for the Vorlesungen (vl) +#let vl(doc) = { + // Global settings + set page(numbering: "1") + set heading(numbering: "1.1") + + // Add some content to the docs + outline() + + // Load the document + doc +} diff --git a/S1/AGLA/lectures.txt b/S1/AGLA/lectures.txt new file mode 100644 index 0000000..6c8641a --- /dev/null +++ b/S1/AGLA/lectures.txt @@ -0,0 +1,31 @@ +Nummer Woche Starttag + +1 Woche 0 21 +2 + +3 Woche 1 28 +4 + +5 Woche 2 4 +6 + +7 Woche 3 11 +8 + +9 Woche 4 18 +10 + +11 Woche 5 25 +12 + +13 Woche 6 +14 + +15 Woche 7 +16 + +17 Woche 8 +18 + +19 Woche 9 +20 diff --git a/S1/AGLA/scores.txt b/S1/AGLA/scores.txt new file mode 100644 index 0000000..b094145 --- /dev/null +++ b/S1/AGLA/scores.txt @@ -0,0 +1,7 @@ +1. 48 +2. 43 +3. + +MAX: 578 +GRENZE: 288 + diff --git a/S1/ExPhyI/.ipynb_checkpoints/ha3-checkpoint.ipynb b/S1/ExPhyI/.ipynb_checkpoints/ha3-checkpoint.ipynb new file mode 100644 index 0000000..bf1da98 --- /dev/null +++ b/S1/ExPhyI/.ipynb_checkpoints/ha3-checkpoint.ipynb @@ -0,0 +1,311 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hausaufgabe Blatt 3\n", + "## Gleichförmig beschleunigte, geradlinige Bewegung - Revisited\n", + "\n", + "In dieser Aufgabe werden wir die Bahnkurve eines gleichförmig beschleunigten Objektes in einer Dimension berechnen und dieses mal auch visualisieren. Die Position $x$ zum Zeitpunkt $t$ ist, wie auf dem Blatt 2, gegeben durch folgende Gleichung:\n", + "\\begin{equation*}\n", + "x\\!\\left( t \\right) = x_0 + v_0 t + \\frac{1}{2} a t^2 \n", + "\\end{equation*}\n", + "wobei $x_0$ und $v_0$ die Anfangsposition und -geschwindigkeit sind und $a$ die konstante Beschleunigung, die auf das Objekt wirkt. \n", + "\n", + "## 1. Numpy Arrays: Linspace\n", + "Anstelle, dass wir die Einträge in numpy arrays \"per Hand\" definieren, können wir eine nützliche Funktion verwenden. \n", + "\n", + "**a)** \n", + "Machen Sie sich mit der nachstehenden Zelle vertraut. Verstehen Sie die Syntax?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.227336Z", + "start_time": "2019-11-01T10:22:27.100666Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.25 0.5 0.75 1. ]\n" + ] + } + ], + "source": [ + "import numpy as np # Laden der Numpy Bibliothek \n", + "\n", + "x = np.linspace(0, 1, 5) # Definieren von x\n", + "\n", + "print(x) # Ausgabe x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**b)** Erstellen sie ein numpy array für die Zeit `t` indem sie `np.linspace()` korrekt verwenden. Dabei soll gelten $t_0 = 0$ und $t_N = 5$ mit der Anzahl der Einträge $N = 50$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**c)** Benutzen Sie die in ha2 Aufgabe 2 definierte Funktion `printBahnkurve()` um sich nun die Bahnkurve für das gerade erstellte array `t` ausgeben zu lassen. Verwenden Sie die Werte $x_0=3$ und $v_0=10$ wie auf Blatt 2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Return\n", + "\n", + "Bisher hat unsere definierte Funktion lediglich einen `print()` Befehl ausgeführt. Wir wollen nun, dass unsere Funktion einen Wert zurück gibt. Dadurch kann der Wert in einer Variablen gespeichert und somit weiterverarbeitet werden. Dazu verwenden wir das `return` Statement. \n", + "\n", + "**d)** Betrachten Sie die folgenden zwei Funktionen. Beschreiben Sie kurz (1-2 Sätze), was hier geschieht. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.233313Z", + "start_time": "2019-11-01T10:22:27.230416Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 4\n" + ] + } + ], + "source": [ + "def identity(x): # definiere Funktion\n", + " return x # definiere Ausgabe\n", + "\n", + "def square(x):# definiere Funktion\n", + " return x**2 # definiere Ausgabe\n", + "\n", + "id2 = identity(2) # definiere id2 über Zugriff auf identity\n", + "square2 = square(2)# definiere id2 über Zugriff auf square\n", + "\n", + "print(id2, square2) # Ausgabe der Werte" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**e)** Schreiben Sie eine neue Funktion, indem Sie den `print()` Befehl in der Funktion `printBahnkurve()` durch das `return` Statement ersetzen. Wählen Sie einen geeigneten Namen für die neue Funktion. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualisierung\n", + "Da Sie nun dazu in der Lage sind, viele Datenpunkte zu erzeugen, wollen wir als nächsten Schritt die berechnete Bahnkurve in einem plot mithilfe von `matplotlib.pyplot` visualisieren. `Matplotlib` ist eine beliebte und sehr vielseitige plot Bibliothek, die es uns ermöglicht Daten zu visualisieren. Wer einen Eindruck davon gewinnen möchte, was alles mit `matplotlib` möglich ist, kann ja mal [hier](https://matplotlib.org/3.1.1/gallery/index.html) vorbeischauen!\n", + "\n", + "Wir haben folgendes Grundgerüst vorbereitet, in dem die Funktion $f(x) = x^2$ beispielhaft geplottet wird." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:42.277126Z", + "start_time": "2019-11-01T10:22:42.160402Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkJUlEQVR4nO3deVhU9eIG8Hc2ZlgHRdkEBFxwQRHBBXPHJXfLFsvU1pultni93bRum3ntdrtl/irNUnOp9CZq7ulNQE0UUVTccENQFhEEhnUGZs7vD2ASQQRlOLO8n+eZ54nDGXiPx+D1nO/5fiWCIAggIiIishJSsQMQERERNSWWGyIiIrIqLDdERERkVVhuiIiIyKqw3BAREZFVYbkhIiIiq8JyQ0RERFaF5YaIiIisCssNERERWRWWGyIymR9++AESicT4ksvl8PHxwXPPPYf09PRmzzN48GAEBwc3+dccPHhwk35NInowcrEDEJH1W7VqFTp16oTS0lLs378fixYtQmxsLJKSkuDo6Ch2PCKyMiw3RGRywcHBCA8PBwAMGTIEer0eCxYswJYtWzBlypT7/rqlpaWwt7dvqphEZCV4W4qIml3fvn0BAKmpqfjwww/Rp08ftGzZEi4uLujZsydWrFiBO9f09ff3x9ixY7Fp0yaEhoZCpVLhww8/BAB8/fXXGDhwINzd3eHo6Ihu3brh008/RXl5eZ3f/8CBA+jbty/s7e3Rpk0b/OMf/4Ber6+xj06nw8cff4xOnTpBqVSidevWeO6553Dz5k0T/IkQUVPilRsianaXLl0CALRu3RqHDh3Cyy+/DD8/PwDA4cOHMXv2bKSnp+O9996r8b7jx4/j3LlzePfddxEQEGC8pXX58mU8/fTTCAgIgJ2dHU6ePImFCxfi/PnzWLlyZY2vkZWVhcmTJ+Ptt9/GRx99hB07duDjjz9GXl4evvrqKwCAwWDAhAkTcODAAbz11lvo168fUlNT8f7772Pw4MFISEjgFSMicyYQEZnIqlWrBADC4cOHhfLycqGwsFDYvn270Lp1a8HZ2VnIysqqsb9erxfKy8uFjz76SHBzcxMMBoPxc23bthVkMpmQnJxc7/es/hpr1qwRZDKZcOvWLePnBg0aJAAQfv311xrveemllwSpVCqkpqYKgiAIP//8swBAiIqKqrHf0aNHBQDCN998U+NrDho0qFF/LkRkWrwtRUQm17dvXygUCjg7O2Ps2LHw9PTErl274OHhgX379mHYsGFQq9WQyWRQKBR47733kJubi+zs7Bpfp3v37ujYsWOtr5+YmIjx48fDzc3N+DWmTZsGvV6PCxcu1NjX2dkZ48ePr7Ht6aefhsFgwP79+wEA27dvh6urK8aNG4eKigrjq0ePHvD09ERMTEzT/gERUZPibSkiMrk1a9agc+fOkMvl8PDwgJeXFwAgPj4eI0aMwODBg/Hdd9/Bx8cHdnZ22LJlCxYuXIjS0tIaX6f6fbdLS0vDgAEDEBQUhC+//BL+/v5QqVSIj4/HzJkza30NDw+PWl/D09MTAJCbmwsAuHHjBvLz82FnZ1fn8eTk5DT+D4GImg3LDRGZXOfOnY1PS91u/fr1UCgU2L59O1QqlXH7li1b6vw6Eomk1rYtW7aguLgYmzZtQtu2bY3bT5w4UefXuHHjRq1tWVlZAAA3NzcAQKtWreDm5obdu3fX+TWcnZ3r3E5E5oHlhohEUz2xn0wmM24rLS3F2rVrG/U1AECpVBq3CYKA7777rs79CwsLsXXr1hq3pn766SdIpVIMHDgQADB27FisX78eer0effr0adQxEZH4WG6ISDRjxozB559/jqeffhp/+ctfkJubi88++6xGUbmX4cOHw87ODk899RTeeustlJWVYenSpcjLy6tzfzc3N7zyyitIS0tDx44dsXPnTnz33Xd45ZVXjE9sTZ48GT/++CNGjx6N119/Hb1794ZCocD169cRHR2NCRMm4JFHHmmSPwMianocUExEohk6dChWrlyJpKQkjBs3Du+88w4ee+wxvP322w3+Gp06dUJUVBTy8vLw6KOPYvbs2ejRoweWLFlS5/6enp746aefsHr1aowfPx7//e9/MX/+/Br7y2QybN26FfPnz8emTZvwyCOPYOLEifjkk0+gUqnQrVu3Bz52IjIdiSDcMVMWERERkQXjlRsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWxeYm8TMYDMjIyICzs3OdU7kTERGR+REEAYWFhfD29oZUWv+1GZsrNxkZGfD19RU7BhEREd2Ha9euwcfHp959bK7cVC94d+3aNbi4uIichoiIiBpCo9HA19e3QQvX2ly5qb4V5eLiwnJDRERkYRoypIQDiomIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVTGbcrNo0SJIJBK88cYb9e4XGxuLsLAwqFQqBAYGYtmyZc0TkIiIiCyCWZSbo0ePYvny5ejevXu9+6WkpGD06NEYMGAAEhMTMX/+fLz22muIiopqpqRERERk7kQvN0VFRZgyZQq+++47tGjRot59ly1bBj8/PyxevBidO3fGiy++iOeffx6fffZZM6Wtn6asHCev5Ysdg4iISDTxKbegrdCLmkH0cjNz5kyMGTMGw4YNu+e+cXFxGDFiRI1tI0eOREJCAsrLy+t8j1arhUajqfEyhRPX8hG+4H94aU0C9AbBJN+DiIjInGUWlOKJb+PQe+HvKCyr+/dycxC13Kxfvx7Hjx/HokWLGrR/VlYWPDw8amzz8PBARUUFcnJy6nzPokWLoFarjS9fX98Hzl2Xzl7OUCqkyC7U4ujVWyb5HkREROZsx6lMAEBHDyc4qxSi5RCt3Fy7dg2vv/461q1bB5VK1eD3SSSSGh8LglDn9mrz5s1DQUGB8XXt2rX7D10PpVyGh7t6AgC2n8owyfcgIiIyZ9urys3Y7t6i5hCt3Bw7dgzZ2dkICwuDXC6HXC5HbGwslixZArlcDr2+9v06T09PZGVl1diWnZ0NuVwONze3Or+PUqmEi4tLjZepjA2pPJm7krJQoTeY7PsQERGZm2u3SnDiWj6kEmBUN09Rs8jF+saRkZFISkqqse25555Dp06d8Pe//x0ymazWeyIiIrBt27Ya2/bs2YPw8HAoFOJd/qrWr50bWjraIbdYh7gruRjQobXYkYiIiJrFjqTKqzZ9Atzg7tzwOzKmINqVG2dnZwQHB9d4OTo6ws3NDcHBwQAqbylNmzbN+J4ZM2YgNTUVc+bMwblz57By5UqsWLECc+fOFeswalDIpHg4uLKtbjvJW1NERGQ7qodkjA3xEjmJGTwtVZ/MzEykpaUZPw4ICMDOnTsRExODHj16YMGCBViyZAkmTZokYsqaxlXdZ9x9Ogu6Ct6aIiIi63c1pxin0zWQSSXG8adiEu22VF1iYmJqfPzDDz/U2mfQoEE4fvx48wS6D70DWqK1sxI3C7U4eOkmhnbyuPebiIiILFj1VZt+7dzg5qQUOY2ZX7mxRDKpBGO6VV6S23YyU+Q0REREpvfnU1Li35ICWG5MYlzV/ca9Z2+grFzcWRqJiIhM6VJ2Ic5nFUIulWCkGdySAlhuTCLUtwXauNqjSFuBmORsseMQERGZTPVdigEdWsHVwU7kNJVYbkxAKpVgTNWluW2neGuKiIiskyAIfz4lJfLEfbdjuTGR6vuOv5+7gWJthchpiIiIml7yjUJcvlkMO5kUw7uazwM0LDcm0q2NGm3dHFBWbsDv53lrioiIrM/2qltSg4Jaw0XEtaTuxHJjIhKJxHj1hhP6ERGRtal5S8o8npKqxnJjQuOq1pqKTb4JjYhLvxMRETW1MxkaXM0tgVIuRWRn87klBbDcmFSQhzPauztBpzdgz5kbYschIiJqMtV3JYZ2coeT0qzmBGa5MSWJRGJcjqH60h0REZGlMxgEY7kZH2I+T0lVY7kxseoFxA5ezEFesU7kNERERA8uITUPGQVlcFbKMaSTu9hxamG5MbF2rZ3QxcsFFQYBu89kiR2HiIjogW09mQ4AGNHVEyqFTOQ0tbHcNIPqqze8NUVERJauXG/AjqoJaif0ML9bUgDLTbMY263y5MddzsXNQq3IaYiIiO7fwYs5yCspRysnO/Rr5yZ2nDqx3DQDPzcHhPi6wiAAu05zOQYiIrJcW6sGEo/p5gW5zDxrhHmmskLjOKEfERFZuFKdHr9VjR8d36ONyGnujuWmmYzp7gWJBDh6NQ/p+aVixyEiImq038/fQIlOD58W9ujp5yp2nLtiuWkmXmp79PZvCYBXb4iIyDL9euLPuW0kEonIae6O5aYZTai6hLclMV3kJERERI1TUFKO2OSbAP78fWauWG6a0ehunlDIJDifVYjkrEKx4xARETXY7jOZ0OkNCPJwRpCns9hx6sVy04xcHewwOKhyJsctJ3j1hoiILIfxlpSZzm1zO5abZjax6lLe1hMZMBgEkdMQERHdW7amDHFXcgGY51pSd2K5aWaRnStXT03PL8WxtDyx4xAREd3TtlOZEASgp58rfFs6iB3nnlhumplKIcPIrp4AOLCYiIgsQ/XEfeY+kLgay40IJoZWXtLbkZQJXYVB5DRERER3dzWnGCev5UMmlWB0Ny+x4zQIy40IIgLd0MpJifySchy4eFPsOERERHdVfdWmXzs3tHZWipymYVhuRCCXSTGuaqXwLSc4oR8REZknQRDwa9XTvZZySwpguRFN9VNTe89moUhbIXIaIiKi2s5manD5ZjHs5FKM7OohdpwGY7kRSXcfNQJaOaKs3IC9Z7PEjkNERFRL9S2pyE7ucFYpRE7TcCw3IpFIJMa5ArYk8tYUERGZF4NBwLYT1U9Jmf/cNrdjuRHRxNDKW1MHL+Ugp0grchoiIqI/JaTmIaOgDM5KuXF2fUsharlZunQpunfvDhcXF7i4uCAiIgK7du266/4xMTGQSCS1XufPn2/G1E0noJUjQnzU0BsE7DiVKXYcIiIio+plgkZ09YRKIRM5TeOIWm58fHzwySefICEhAQkJCRg6dCgmTJiAM2fO1Pu+5ORkZGZmGl8dOnRopsRNb3z1SuFca4qIiMyEtkJv/Ef3oz0t5ympaqKWm3HjxmH06NHo2LEjOnbsiIULF8LJyQmHDx+u933u7u7w9PQ0vmQyy2qUtxsX4gWpBEhMy0dqbrHYcYiIiBB9PhsFpeXwdFGhb6Cb2HEazWzG3Oj1eqxfvx7FxcWIiIiod9/Q0FB4eXkhMjIS0dHR9e6r1Wqh0WhqvMyJu7MKD7VvBeDPFVeJiIjEtOl41dw2od6QSSUip2k80ctNUlISnJycoFQqMWPGDGzevBldunSpc18vLy8sX74cUVFR2LRpE4KCghAZGYn9+/ff9esvWrQIarXa+PL19TXVodw341NTJ9IhCFwpnIiIxJNXrEN0cjYA4NFQH5HT3B+JIPJvU51Oh7S0NOTn5yMqKgrff/89YmNj71pw7jRu3DhIJBJs3bq1zs9rtVpotX8+iaTRaODr64uCggK4uLg0yTE8qMKycoR//D9oKwzYPrs/gtuoxY5EREQ2au3hVPxjy2l08XLBztcHiB3HSKPRQK1WN+j3t+hXbuzs7NC+fXuEh4dj0aJFCAkJwZdfftng9/ft2xcXL1686+eVSqXxaazql7lxVikwrHPlzI9cKZyIiMS0+fh1AJY5kLia6OXmToIg1LjSci+JiYnw8rKMVUrrUz1B0taTGdAbeGuKiIia39WcYhxPy4dU8ueQCUskF/Obz58/H6NGjYKvry8KCwuxfv16xMTEYPfu3QCAefPmIT09HWvWrAEALF68GP7+/ujatSt0Oh3WrVuHqKgoREVFiXkYTWJQUGuo7RXILtTi0OUcDOjQWuxIRERkYzZX3T3o36E13F1UIqe5f6KWmxs3bmDq1KnIzMyEWq1G9+7dsXv3bgwfPhwAkJmZibS0NOP+Op0Oc+fORXp6Ouzt7dG1a1fs2LEDo0ePFusQmoxSLsO4EC+sO5yGTcfTWW6IiKhZCYJgnHPt0VDLvSUFmMGA4ubWmAFJzS0xLQ+PfHMI9goZjr47DE5KUbsnERHZkGOptzBpaRwc7GRIeHcYHOzM63eQRQ0opj/18HVFYCtHlJbrsSuJyzEQEVHzqZ7b5uFgT7MrNo3FcmNGJBKJcXR69V8yIiIiU9NW6LG9erkFC53b5nYsN2ameqXwuCu5uJ5XInIaIiKyBdHnb6KgtBweLkpEtLO85RbuxHJjZnxaOCCiah0PznlDRETNYXNi5dw2E3u0scjlFu7EcmOGbr81ZWPjvYmIqJnll+iw73zlcguPWPDEfbdjuTFDo7p5QaWQ4kpOMU5cyxc7DhERWbHtpzJRrhfQ2csFnTzN6yni+8VyY4aclHI83NUTAAcWExGRaVVP3Gfpc9vcjuXGTE0KqxytvvVkBrQVepHTEBGRNUrNLcax1DxIJX8uA2QNWG7MVL92reDhokRBaTmiq+6FEhERNaXqqzYPtW9l0cst3InlxkzJpBLjY+FRvDVFRERNTBCEP29JWclA4mosN2aseiKl6PPZuFWsEzkNERFZk+Np+UjNLYGDnQwjq8Z5WguWGzMW5OmM4DYuqDAI2HqCV2+IiKjpRB2vnNvm4a6Wv9zCnVhuzNyknpVXbzZxQj8iImoiZeV6bDuZAQB4LMzyl1u4E8uNmRsX4g25VIJT1wtw8Uah2HGIiMgK/HYmC4VlFWjjao++gZa/3MKdWG7MXCsnJQYHtQbAgcVERNQ0Nh6rvCU1KcwHUitYbuFOLDcW4NGqW1NbEtOhN3A5BiIiun/p+aU4eCkHAPC4Fd6SAlhuLEJkZ3e4qOTI0pQh7nKu2HGIiMiCbT5+HYIA9A1sCd+WDmLHMQmWGwuglMswLqRy5shNVaPbiYiIGksQBOMtqcfCfEVOYzosNxai+tbUrtNZKNJWiJyGiIgs0dGrebiaWwJHOxlGd7OuuW1ux3JjIXr6uSKwlSNKy/XYcSpD7DhERGSBfkm4BgAY093L6ua2uR3LjYWQSCR4PLzyEuJ/E3hrioiIGqdYW4EdSZkAYPx9Yq1YbizIpJ5tIJNKcCw1D5eyi8SOQ0REFmTX6SyU6PTwd3NAeNsWYscxKZYbC+LuosLgjpVz3vxy7JrIaYiIyJJU35J6LMwHEon1zW1zO5YbC/NEr8pLiVHH0lGuN4ichoiILEFabgmOpNyCRPLnAyrWjOXGwgzt5I5WTnbIKdIiJvmm2HGIiMgCbKy62t+/fSt4u9qLnMb0WG4sjEImxSOhbQAA/03grSkiIqqfwSAYl++xxkUy68JyY4GqR7nvO5+N7MIykdMQEZE5i7uSi/T8Ujir5BjZ1Xrntrkdy40F6ujhjB6+rtAbBGxJ5GKaRER0d9UDiceHeEOlkImcpnmw3FioJ26b80YQuJgmERHVpikrx67TWQBs55YUwHJjscaGeEGlkOJSdhESr+WLHYeIiMzQjlOZ0FYY0N7dCT18XcWO02xYbiyUi0qB0cFeAP685EhERHS76t8Pj9vA3Da3E7XcLF26FN27d4eLiwtcXFwQERGBXbt21fue2NhYhIWFQaVSITAwEMuWLWumtOanemDxtpOZKNFxMU0iIvrTpewiHE/Lh0wqMT5laytELTc+Pj745JNPkJCQgISEBAwdOhQTJkzAmTNn6tw/JSUFo0ePxoABA5CYmIj58+fjtddeQ1RUVDMnNw99AlrCr6UDirQV2JWUJXYcIiIyIxuPVa5DOKhja7i7qERO07xELTfjxo3D6NGj0bFjR3Ts2BELFy6Ek5MTDh8+XOf+y5Ytg5+fHxYvXozOnTvjxRdfxPPPP4/PPvusmZObB6lUgifCKweIcc4bIiKqVq43GMvNE1a+SGZdzGbMjV6vx/r161FcXIyIiIg694mLi8OIESNqbBs5ciQSEhJQXl5e53u0Wi00Gk2NlzWZFOYDiQQ4knILV3OKxY5DRERm4PdzN5BTpEUrJyUiO7uLHafZiV5ukpKS4OTkBKVSiRkzZmDz5s3o0qVLnftmZWXBw8OjxjYPDw9UVFQgJyenzvcsWrQIarXa+PL1ta4G66W2x8AOlYtpVrd0IiKybT/H/7lIpkIm+q/6Zif6EQcFBeHEiRM4fPgwXnnlFUyfPh1nz5696/53jvaunuPlbqPA582bh4KCAuPr2jXru31Tfclx47Hr0Bs45w0RkS1Lzy/F/ouVaw9O7mVd/6BvKLnYAezs7NC+fXsAQHh4OI4ePYovv/wS3377ba19PT09kZVVc+BsdnY25HI53Nzc6vz6SqUSSqWy6YObkWFd3OHqoECWpgz7L97EkCDbuwRJRESV/nv0GgQBiAh0g38rR7HjiEL0Kzd3EgQBWq22zs9FRERg7969Nbbt2bMH4eHhUCgUzRHPLCnlMkzsUfmYH+e8ISKyXXqDYPw9MLm3bV61AUQuN/Pnz8eBAwdw9epVJCUl4Z133kFMTAymTJkCoPKW0rRp04z7z5gxA6mpqZgzZw7OnTuHlStXYsWKFZg7d65Yh2A2qm9N7T17A7lFdZdDIiKybvsv3ERGQRlcHRQ2s0hmXUQtNzdu3MDUqVMRFBSEyMhIHDlyBLt378bw4cMBAJmZmUhLSzPuHxAQgJ07dyImJgY9evTAggULsGTJEkyaNEmsQzAbXbxd0N1HjXK9gKjjHFhMRGSL1h+t/J35aKiPzSySWReJYGOrLmo0GqjVahQUFMDFxUXsOE1qfXwa3t6UhIBWjtj310E2NdU2EZGtyy4sQ79F+1BhELDnzYHo6OEsdqQm1Zjf32Y35obu37gQbzjayZCSU4y4K7lixyEioma08dh1VBgE9PRztbpi01gsN1bEUSnHhKr1Q6rnOCAiIutnMAjYcLR6ILGfyGnEx3JjZZ6u+kv92+ksDiwmIrIRh1NykZpbAmelHGO7e4kdR3QsN1YmuI0a3dqoodMbsOl4uthxiIioGayvulo/voc3HOxEn8JOdCw3VujpPpVXb36OT4ONjRcnIrI5ecU67D5dOcHt5F68JQWw3Fil6oHFV3KKcSTllthxiIjIhDYlpkOnN6Crtwu6+ajFjmMWWG6skJNSjvFVMxb/dCTtHnsTEZGlEgQB6+Mrf85zIPGfWG6sVPXA4t2ns3CrWCdyGiIiMoXjafm4mF0Ee4UME3p4ix3HbLDcWKluPmoEt3GpGljMGYuJiKxR9VWbMd294KKy3TUW78RyY8Weqrp68xMHFhMRWZ3CsnJsP5UJAHjKhhfJrAvLjRWb0KMNHOxkuHKzGPEcWExEZFV+PZGB0nI92rs7oadfC7HjmBWWGyvmpJQb78H+FM+BxURE1kIQBPxY9cDI5F6+XEvwDiw3Vq761tSupCzkcWAxEZFVOJ6Wj3OZGqgUUjwexltSd2K5sXLd2qjR1btyYHEUBxYTEVmFHw+nAgDGdfeG2oEDie/EcmPlJBKJ8eoNZywmIrJ8t4p1xoHEz/RtK3Ia88RyYwMm9PCGg50Ml28W4+jVPLHjEBHRA/gl4Rp0egO6tVEjxNdV7DhmieXGBjirFBgfUjWw+EiqyGmIiOh+GQyC8QGRZ/pyRuK7YbmxEdW3pnZyxmIiIot14FIOUnNL4KySY1wIZyS+G5YbG9G9esbiCgP+m3BN7DhERHQf1lUNJH4szAcOdnKR05gvlhsbIZFIMK2vP4DK/zn0Bg4sJiKyJOn5pfj93A0AwJQ+HEhcH5YbGzIuxBtqewWu55Ui9kK22HGIiKgR1senwSAAEYFuaO/uJHYcs8ZyY0Ps7WR4PMwHALAmjgOLiYgsRbnegPVHK4cU8PHve2O5sTHV/1PEXriJ1NxikdMQEVFD7DlzAzcLtWjtrMSIrh5ixzF7LDc2xr+VIwZ1bA1B+HNgGhERmbfqn9eTe/lCIeOv7nvhn5ANmhZRefXmvwnXUVauFzkNERHV51J2IeKu5EIq+XNaD6ofy40NGhzkjjau9igoLcfWkxlixyEionqsO1w5aV9kZw94u9qLnMYysNzYIJlUYhx7szYuletNERGZqRJdhXHRYw4kbjiWGxv1ZC9f2MmlSEovwIlr+WLHISKiOmw7mYHCsgq0dXPAgPatxI5jMVhubFRLRzuM7e4FAFjLgcVERGZHEATjz+ene/tBKpWInMhysNzYsKlVlzi3n8rkelNERGbm5PUCnE7XwE4uxePhvmLHsSgsNzash68rurVRQ1dhwIajXG+KiMicrK2abHVMNy+0dLQTOY1lEbXcLFq0CL169YKzszPc3d0xceJEJCcn1/uemJgYSCSSWq/z5883U2rrIZFIMLXqsXCuN0VEZD5yirTYVvU0a/X0HdRwopab2NhYzJw5E4cPH8bevXtRUVGBESNGoLj43jPnJicnIzMz0/jq0KFDMyS2PuOr1ptKzy9FTDLXmyIiMgfr49Og0xsQ4qNGqF8LseNYHFHXS9+9e3eNj1etWgV3d3ccO3YMAwcOrPe97u7ucHV1NWE626BSyPBEuA++O5CCNXGpiOzMab2JiMRUrjcY57aZ3s9f3DAWyqzG3BQUFAAAWrZsec99Q0ND4eXlhcjISERHR991P61WC41GU+NFNT3Tty0kksr1pq7mcL0pIiIx7TlzA1maMrRyssOYqqdaqXHMptwIgoA5c+agf//+CA4Ovut+Xl5eWL58OaKiorBp0yYEBQUhMjIS+/fvr3P/RYsWQa1WG1++vhxxfqe2bpXrTQHAj0f4WDgRkZhWH7oKoHKpBaVcJm4YCyURzGR62pkzZ2LHjh04ePAgfHx8GvXecePGQSKRYOvWrbU+p9VqodVqjR9rNBr4+vqioKAALi4uD5zbWuw7fwPP/5AAtb0CcfOGwsFO1DuWREQ26WyGBqOXHIBcKsHBvw+Fp1oldiSzodFooFarG/T72yyu3MyePRtbt25FdHR0o4sNAPTt2xcXL16s83NKpRIuLi41XlTboI7u8GvpgILScmxJ5HpTRERiqL5qMzLYk8XmAYhabgRBwKxZs7Bp0ybs27cPAQEB9/V1EhMT4eXF+5IPQiaVGB83/OFQCtebIiJqZnnFOmw5kQ4AeI4DiR+IqPceZs6ciZ9++gm//vornJ2dkZWVBQBQq9Wwt69c+XTevHlIT0/HmjVrAACLFy+Gv78/unbtCp1Oh3Xr1iEqKgpRUVGiHYe1eKKXL77YewEXbhThj0u56N+B65gQETWX9UevQVthQFdvF4S15ePfD0LUKzdLly5FQUEBBg8eDC8vL+Nrw4YNxn0yMzORlpZm/Fin02Hu3Lno3r07BgwYgIMHD2LHjh149NFHxTgEq+KiUuCxsMrbgqv+SBE5DRGR7ajQG7Cuah2p6f38IZFwHakHYTYDiptLYwYk2aIrN4sw9D+xkEiA6L8Ohn8rR7EjERFZvd2nszBj3TG0cFAgbl4kVAo+JXUnixtQTOYjsLUTBge1hiAAP1QNbCMiItOqHkg8ubcfi00TYLmhWp57qHJg98Zj11FYVi5yGiIi63Y2Q4O4K7mQSSV4pi/XkWoKLDdUy8AOrdCutSOKtBXYeOy62HGIiKzayqoxjg8He6KNq73IaawDyw3VIpFI8GzVY4irD12FgauFExGZxM1CLbaeqJxb7IX+9zcdCtXGckN1erSnD5xVclzNLUE0VwsnIjKJdYdTodMb0MPXFT25+neTYbmhOjkq5Zjcq3IdrlV/XBU3DBGRFSor1xvX8+NVm6bFckN3NS3CH1IJcPBSDi7cKBQ7DhGRVdl6MgM5RTp4qVV4ONhT7DhWheWG7sq3pQOGd/EAAKw8yEn9iIiaiiAIxp+r0/v5QyHjr+OmxD9NqteLAwIBAJsS05FTpL3H3kRE1BBxl3NxPqsQ9goZnurlJ3Ycq8NyQ/UKb9sCIT5q6Cr+nBqciIgeTPXj34+F+UDtoBA5jfVhuaF6SSQSvFB19WZtXCrKyvUiJyIismwpOcX4/XzlU6jPPeQvbhgrdV/l5sCBA3jmmWcQERGB9PTK5dnXrl2LgwcPNmk4Mg+jqyaWyi3WYUtiuthxiIgs2g9/pEAQgKGd3BHY2knsOFap0eUmKioKI0eOhL29PRITE6HVVo7DKCwsxD//+c8mD0jik8ukxkn9vj+YAhtba5WIqMkUlJbjl6qZ3/n4t+k0utx8/PHHWLZsGb777jsoFH/eJ+zXrx+OHz/epOHIfDzZ2xdOSjkuZRch9sJNseMQEVmkn46koUSnRydPZ/Rr5yZ2HKvV6HKTnJyMgQMH1tru4uKC/Pz8pshEZshFpcCTVZP6reBj4UREjaarMGBV1UDiFwcEQiKRiJzIejW63Hh5eeHSpUu1th88eBCBgYFNEorM07P9Kif1O3AxB+ezNGLHISKyKFtPZiC7UAsPFyXGh3iLHceqNbrcvPzyy3j99ddx5MgRSCQSZGRk4Mcff8TcuXPx6quvmiIjmQnflg4Y1c0LAPD9AV69ISJqKEEQ8N3+KwCAZ/sFwE7Oh5VNSd7YN7z11lsoKCjAkCFDUFZWhoEDB0KpVGLu3LmYNWuWKTKSGXmxfwB2nMrEryfS8dbIILi7qMSORERk9vZfzEHyjUI42snwdB9O2mdq91UdFy5ciJycHMTHx+Pw4cO4efMmFixY0NTZyAyF+rVAWNsWKNcLWBPHSf2IiBqi+qrN5N5+UNtz0j5Ta3S5ef7551FYWAgHBweEh4ejd+/ecHJyQnFxMZ5//nlTZCQz89KAyscX1x5ORbG2QuQ0RETm7UxGAQ5eyoFMKuGkfc2k0eVm9erVKC0trbW9tLQUa9asaZJQZN6Gd/FEQCtHFJSW478J18SOQ0Rk1qrHKI7p5gWfFg4ip7ENDS43Go0GBQUFEAQBhYWF0Gg0xldeXh527twJd3d3U2YlMyGTSvBS1ZIM3x9IQbneIHIiIiLzlJFfim0nMwDA+HOTTK/BA4pdXV0hkUggkUjQsWPHWp+XSCT48MMPmzQcma9He7bB53uTkZ5fip1JmZjQo43YkYiIzM4Ph66iwiAgItAN3XzUYsexGQ0uN9HR0RAEAUOHDkVUVBRatmxp/JydnR3atm0Lb28+t28rVAoZnnsoAP/+LRnLYq9gfIg3J6QiIrqNpqwcPx1JAwD8ZSCv2jSnBpebQYMGoaKiAtOmTUN4eDh8fX1NmYsswDN92uLr6Es4l6nBgYs5GNixtdiRiIjMxs9H0lCkrUAHdycM4s/HZtWoAcVyuRxRUVHQ6/WmykMWRO2gwFO9K+dr+Hb/ZZHTEBGZD22F3rhUzUsDAiGV8sp2c2r001KRkZGIiYkxQRSyRM/3D4BcKsEfl3KRdL1A7DhERGZh8/F0ZBdq4emiwsRQjklsbo2eoXjUqFGYN28eTp8+jbCwMDg6Otb4/Pjx45ssHJm/Nq72GBfijc2J6fh2/2V89XRPsSMREYlKbxCwvGrSvhcHcKkFMUgEQRAa8wap9O4nSSKRmP0tK41GA7VajYKCAri4uIgdxyqcy9Rg1JcHIJUAMXOHwM+N8zgQke3alZSJV348DrW9AofeHgpHZaOvI1AdGvP7u9F10mAw3PVl7sWGTKOzlwsGdWwNgwB8f/CK2HGIiEQjCAKWxlaOQZzez5/FRiQPdK2srKysqXKQhXt5UOVjjhuOXkNOkVbkNERE4jh0ORenrhdApZDi2X7+YsexWY0uN3q9HgsWLECbNm3g5OSEK1cq/6X+j3/8AytWrGjU11q0aBF69eoFZ2dnuLu7Y+LEiUhOTr7n+2JjYxEWFgaVSoXAwEAsW7assYdBTSwi0A0hvq7QVhiw6o8UseMQEYliaUzlVZvJvfzQ0tFO5DS2q9HlZuHChfjhhx/w6aefws7uzxPXrVs3fP/99436WrGxsZg5cyYOHz6MvXv3oqKiAiNGjEBxcfFd35OSkoLRo0djwIABSExMxPz58/Haa68hKiqqsYdCTUgikWDm4HYAgDWHUlFQWi5yIiKi5nXqej4OXsqBXCrBi1ULDJM4Gn0zcM2aNVi+fDkiIyMxY8YM4/bu3bvj/Pnzjfpau3fvrvHxqlWr4O7ujmPHjmHgwIF1vmfZsmXw8/PD4sWLAQCdO3dGQkICPvvsM0yaNKlxB0NNalhnD3T0cMKFG0VYdzgVM4e0FzsSEVGzWVY11mZ8D28ukCmyRl+5SU9PR/v2tX9pGQwGlJc/2L/WCwoq50m5fWmHO8XFxWHEiBE1to0cORIJCQl1fn+tVltjkU+NRvNAGenupFIJXh1c+XdjxcEUlOo4wJyIbMOVm0XYdToLADBjUDuR01Cjy03Xrl1x4MCBWtt/+eUXhIaG3ncQQRAwZ84c9O/fH8HBwXfdLysrCx4eHjW2eXh4oKKiAjk5ObX2X7RoEdRqtfHFZSNMa2x3L/i2tMetYh3WH00TOw4RUbNYvv8KBKH6Craz2HFsXqNvS73//vuYOnUq0tPTYTAYsGnTJiQnJ2PNmjXYvn37fQeZNWsWTp06hYMHD95z3zsXaKyeqqeuhRvnzZuHOXPmGD/WaDQsOCYkl0kxY1A7vLP5NJbvv4IpfdpyAisismoZ+aWIOn4dAPDKYC6QaQ4a/Vtn3Lhx2LBhA3bu3AmJRIL33nsP586dw7Zt2zB8+PD7CjF79mxs3boV0dHR8PHxqXdfT09PZGVl1diWnZ0NuVwONze3WvsrlUq4uLjUeJFpTerpA3dnJTILyrAlMV3sOEREJrV8/xWU6wVEBLohrO3dh1VQ82lwuXn33Xexb98+lJWVYeTIkYiNjUVRURFKSkpw8ODBWuNgGkIQBMyaNQubNm3Cvn37EBBw79HlERER2Lt3b41te/bsQXh4OBQKRaMzUNNTKWR4aUDlv16Wxl6G3tCoSbCJiCxGdmEZfo6vvAU/eygfojAXDS43P//8M4YNGwZXV1cMGjQIH374IQ4cOACdTnff33zmzJlYt24dfvrpJzg7OyMrKwtZWVkoLS017jNv3jxMmzbN+PGMGTOQmpqKOXPm4Ny5c1i5ciVWrFiBuXPn3ncOanpP9/GD2l6BlJxi7DqdKXYcIiKTWHEgBdoKA3r6uSKiXe27BySOBpeby5cv49q1a/juu+/Qvn17rFmzBoMGDUKLFi0wbNgwLFy4EIcOHWrUN1+6dCkKCgowePBgeHl5GV8bNmww7pOZmYm0tD8HpgYEBGDnzp2IiYlBjx49sGDBAixZsoSPgZsZR6Uczz3kDwD4OvoyGrmEGRGR2csr1mHt4VQAwOyhHeoc90niaPTCmbe7du0aoqOjERMTg6ioKBQXF6OioqIp8zU5LpzZfPJLdOj3yT6U6PRY+Ww4hnbyuPebiIgsxOd7krFk3yV09XbB9tn9WW5MzKQLZ1a7fPky9uzZg99++w2//fYb9Ho9hgwZcr9fjqyQq4MdpvZtCwBY8vslXr0hIquhKSvHqkNXAVSOtWGxMS8NLjcpKSlYuXIlpk6dCl9fX4SGhmLjxo3o1q0bNm7ciPz8/FoDfYleHBAIlUKKE9fyceBi7XmIiIgs0dq4VBSWVaCDuxNGdPEUOw7docHz3LRr1w5+fn549dVX8dprr6Fnz56QyWSmzEZWoLWzElP6tMWKgyn48veLGNChFf+FQ0QWrURXge8PVC4aPWtoe0il/Jlmbhp85ebxxx+HVqvFokWLsGDBAixevBjHjx/nrQa6p5cHBsJOLsWx1Dwcupwrdhwiogfy05E05JWUw9/NAWO6eYkdh+rQ4HKzYcMGZGZmIi4uDqNGjUJ8fDxGjx6NFi1aYOzYsfj3v/+No0ePmjIrWSh3FxWe7u0HAPjy94sipyEiun9l5Xp8u7/yqs2rg9tDLuMM7Oao0WelU6dOeOWVV7BhwwZkZWXh0KFD6NGjBz7++GNERESYIiNZgZcHBcJOJkV8yi0cvsKrN0RkmdbHp+FmoRZtXO0xMbSN2HHoLhq9thQA3LhxAzExMYiJiUF0dDQuXLgApVKJAQMGNHU+shJeans82csXaw+nYsnvF9E3kJNdEZFlKSvX45uYywCAV4e047p5ZqzB5eaXX34xzmmTnJwMuVyO3r1744knnsCQIUPQr18/KJVKU2YlCzdjcDusP5qGQ5dzcfTqLfTy5xosRGQ5fo5PQ3bVVZvHw7gAszlrcLmZMmUKwsPD8cgjj2DIkCF46KGHYG9vb8psZGXauNrjsTBf/ByfhiW/X8TaF/qIHYmIqEFuv2ozc0h7XrUxcw0uN3l5eXB0dKyx7Y8//kB4eDiv2FCDvTq4HX5JuIYDF3NwLDUPYW1biB2JiOiefjry51ibx8J8xI5D99Dg6nlnsQGAUaNGIT09vUkDkXXzbemAR3tWDsLjk1NEZAnKyvVYGsurNpbkgc4Q57ih+zFrSAfIpBLsv3ATCVdviR2HiKheP/KqjcVh/aRm5+fmgMerfkB8vveCyGmIiO6urFyPZVVXbWYN5VUbS9Hos/Tss89i//79AIBvv/0WHh5c6Zkab9bQ9lDIJDh0ORdxnLWYiMzUusOpuFmohU8Le0zqyas2lqLR5aawsBAjRoxAhw4dkJKSgvz8fBPEImvn08IBk3tVzlr8xd4LvMVJRGanVKfHstiqNaQ41saiNPpMRUVFIT09HbNmzcLGjRvh7++PUaNGYePGjSgvLzdFRrJS1QPz4q/ewsFLXDGciMzLj0dSkVNUddWGY20syn3VUDc3N7z++utITExEfHw82rdvj6lTp8Lb2xtvvvkmLl7kUzB0b55qFab0qbx68589vHpDROajSFthnNdm9tD2UHANKYvyQGcrMzMTe/bswZ49eyCTyTB69GicOXMGXbp0wRdffNFUGcmKvTK4HVQKKU5cy0d0crbYcYiIAACrDqbgVrEOAa0cOdbGAjW63JSXlyMqKgpjx45F27Zt8csvv+DNN99EZmYmVq9ejT179mDt2rX46KOPTJGXrIy7swrTI/wBVD45xas3RCS2gpJyLD9QOdbmzeEdufK3BWr0wpleXl4wGAx46qmnEB8fjx49etTaZ+TIkXB1dW2CeGQLXh7UDusOp+J0ugZ7zt7AyK6eYkciIhv27f7LKCyrQCdPZ4zt5iV2HLoPja6jX3zxBTIyMvD111/XWWwAoEWLFkhJSXnQbGQjWjra4dmH/AFUPjllMPDqDRGJI7uwDKv+uAoA+OuIIEilEnED0X1pdLmZOnUqVCqVKbKQDXtpQCCcVXKczyrEtlMZYschIhv1TfRllJbrEeLrimGd3cWOQ/eJNxLJLLg62OHlgYEAKp+c0lUYRE5ERLYmPb8UPx1JAwD8bUQQJBJetbFULDdkNp57KACtnJRIu1WCDQnXxI5DRDbm/36/CJ3egL6BLfFQezex49ADYLkhs+GolOO1yPYAgCW/X0SpTi9yIiKyFSk5xfjl2HUAwN9G8qqNpWO5IbMyuZcffFva42ahFqsOcVA6ETWPxf+7AL1BwNBO7ghr21LsOPSAWG7IrNjJpZgzvCMAYFnMZRSUcEkPIjKt0+kF+PVE5YMM1T9/yLKx3JDZGR/SBp08naEpq8Cy/ZfFjkNEVu7T35IBAONDvBHcRi1yGmoKLDdkdmRSCeaOCAIArPojBdmaMpETEZG1+uNSDvZfuAmF7M+fO2T5WG7ILEV2dkdY2xYoKzdgyT4uxEpETc9gEPDJrvMAgCl92sLPzUHkRNRUWG7ILEkkErw1svJfUevjr+FqTrHIiYjI2uxIykRSegGclHLMHtpe7DjUhEQtN/v378e4cePg7e0NiUSCLVu21Lt/TEwMJBJJrdf58+ebJzA1qz6Bbhgc1BoVBgH/rronTkTUFHQVBny2p/Lnyl8GBsLNSSlyImpKopab4uJihISE4KuvvmrU+5KTk5GZmWl8dejQwUQJSWxvj+oEiaTyX1jH0/LEjkNEVmL90TSk5paglZMSL/QPEDsONbFGrwrelEaNGoVRo0Y1+n3u7u5cddxGdPJ0wWM9ffDLsev4545z+GVGBCfXIqIHUqStwJLfK8fyvTGsAxyVov4qJBOwyDE3oaGh8PLyQmRkJKKjo+vdV6vVQqPR1HiRZfnriCCoFFIkpObhtzM3xI5DRBbuu/1XkFOkQ0ArRzzZy1fsOGQCFlVuvLy8sHz5ckRFRWHTpk0ICgpCZGQk9u/ff9f3LFq0CGq12vjy9eVfZEvjqVbhxf6Vi2p+uvs8yvVcVJOI7s/NQi2+O3AFQOUyCwqZRf0apAaSCIIgiB0CqHw6ZvPmzZg4cWKj3jdu3DhIJBJs3bq1zs9rtVpotVrjxxqNBr6+vigoKICLi8uDRKZmVFhWjsH/jkFusQ4LJnTF1Ah/sSMRkQWatykJP8enIcTXFVte7cfb3BZEo9FArVY36Pe3xVfWvn374uLFu8+DolQq4eLiUuNFlsdZpcAbwyoHji/+30UUlnFZBiJqnOSsQmw4mgYAeHdMZxYbK2bx5SYxMRFeXl5ix6BmMLm3HwJbOSK3WIdvY6+IHYeILMzCnedgEIDR3TzRy5+LY1ozUYeIFxUV4dKlS8aPU1JScOLECbRs2RJ+fn6YN28e0tPTsWbNGgDA4sWL4e/vj65du0Kn02HdunWIiopCVFSUWIdAzUghk+Lvozrh5bXH8P3BK3imb1t4qlVixyIiCxCTnI39F27CTibF3x/uJHYcMjFRy01CQgKGDBli/HjOnDkAgOnTp+OHH35AZmYm0tLSjJ/X6XSYO3cu0tPTYW9vj65du2LHjh0YPXp0s2cncYzo4oFe/i1w9GoePtuTjM8eDxE7EhGZuQq9AQt3nAMATO/XFm3dHEVORKZmNgOKm0tjBiSReUpMy8Mj3xyCRAJsndkf3Xy4ii8R3d26w6l4d8tptHBQIOZvQ6C2V4gdie6DTQ0oJtsT6tcCj4S2gSAAH247Axvr50TUCIVl5fhi7wUAwBvDOrLY2AiWG7JIbz0cBHuFDAmpediRlCl2HCIyU9/EXEZusQ6BrR3xdB8/seNQM2G5IYvkpbbHjEHtAACLdp5HWble5EREZG6u3SrBioMpAID5ozpzwj4bwjNNFusvAwPhrVYhPb8U3+3no+FEVNMnu89DV2FAv3ZuiOzsLnYcakYsN2Sx7O1k+Puoykc6v4m5jBuaMpETEZG5iLucix2nMiGVAO+O6cIJ+2wMyw1ZtPEh3ghr2wKl5Xr8a/d5seMQkRmo0Bvw4bYzAICn+/ihizefjLU1LDdk0SQSCd4b2wUAsOl4Ok5cyxc3EBGJ7uf4NJzPKoTaXoG/Dg8SOw6JgOWGLF6Iryse7dkGAPARHw0nsml5xTp8tqfy0e+/juiIFo52IiciMbDckFX4+8Od4GAnw/G0fGw6ni52HCISyed7L6CgtBydPJ3xdG8++m2rWG7IKni4qDB7aOWq4Yt2nYeGq4YT2ZyzGRr8eCQVAPD+uK6Q89Fvm8UzT1bjhf4BCGztiJwirXFGUiKyDYIg4INtZ2AQgDHdvBDRzk3sSCQilhuyGnZyKT4Y1xUAsCYuFeezNCInIqLmsv1UJuJTbkGlkGLeaK76betYbsiqDOzYGg939YTeIOC9LRxcTGQLirUV+OfOylW/XxnUHj4tHERORGJjuSGr849xXaBSSBF/9Ra2nswQOw4RmdiS3y8is6AMPi3s8fKgQLHjkBlguSGr08bVHrOGtAcALNxxDoUcXExktZKzCo3rR304vitUCpnIicgcsNyQVXppYCD83RyQXajFkt8vih2HiExAEAT8Y8tpVBgEjOjigcjOHmJHIjPBckNWSSmX4f2qwcWr/riKCzcKRU5ERE1t0/F0xF+9BXuFDO+N6yJ2HDIjLDdktYZ0csewzh6oMAh4Z3MSDAYOLiayFgUl5cZBxK9FduAgYqqB5Yas2gfju8BeIcPRq3n45dg1seMQURP5957zyC3Wob27E17oHyB2HDIzLDdk1XxaOGDO8I4AgH/uPI+cIq3IiYjoQZ28lo8fj6QBABZMCIadnL/KqCb+jSCr99xD/ujs5YKC0nL8c8c5seMQ0QPQGwS8u+U0BAF4NLQNZyKmOrHckNWTy6T45yPBkEiATYnpOHQpR+xIRHSf1sRdRVJ6AZxVcswb3VnsOGSmWG7IJoT6tcAzfdoCAN7dchpl5XqRExFRY6Xnl+LfvyUDAP7+cCe0dlaKnIjMFcsN2Yy/PRyE1s5KXMkpxtKYy2LHIaJGqJ7TpkSnRy//Fni6t5/YkciMsdyQzXBRKfB+1VwYS2Mu4/LNIpETEVFDbT+ViX3ns2Enk2LRo90glUrEjkRmjOWGbMqYbl4YHNQaOr0B8zdx7hsiS5BfosOH284AAGYOaY/27s4iJyJzx3JDNkUikWDBhGDYK2Q4knILP8WniR2JiO5h4Y5zyCnSoYO7E14Z3E7sOGQBWG7I5vi2dMDfRgYBAD7ZdR4Z+aUiJyKiuzl0KQe/HLsOiQT4ZFI3zmlDDcK/JWSTpvfzR08/VxRpKzB/cxIEgbeniMxNWbke8zYnAQCe6dMWYW1bipyILAXLDdkkmVSCTx/rDjuZFDHJN7E5MV3sSER0h8X/u4jU3BJ4uqjw1sNBYschC8JyQzarvbszXh/WAQDw0fazuFnIpRmIzEViWh6W76+csmHBxGA4qxQiJyJLImq52b9/P8aNGwdvb29IJBJs2bLlnu+JjY1FWFgYVCoVAgMDsWzZMtMHJav1l4GB6OLlgvyScnyw9YzYcYgIlbej5v5yEgYBmNjDG8O7eIgdiSyMqOWmuLgYISEh+Oqrrxq0f0pKCkaPHo0BAwYgMTER8+fPx2uvvYaoqCgTJyVrpZBJ8elj3SGTSrAjKRO7T2eJHYnI5i3+30VcvlmM1s5KfDC+q9hxyALJxfzmo0aNwqhRoxq8/7Jly+Dn54fFixcDADp37oyEhAR89tlnmDRpkolSkrULbqPGywMD8U3MZby75TT6BLREC0c7sWMR2aTbb0f985FucHXg/4vUeBY15iYuLg4jRoyosW3kyJFISEhAeXl5ne/RarXQaDQ1XkR3ei2yA9q7OyGnSIt//Hpa7DhENom3o6ipWFS5ycrKgodHzb/sHh4eqKioQE5O3Ss9L1q0CGq12vjy9fVtjqhkYVQKGT5/IgQyqQTbT2Vi28kMsSMR2RzejqKmYlHlBqicYfZ21fOT3Lm92rx581BQUGB8Xbt2zeQZyTJ193HFzCHtAQD/+PU0sjVlIicish28HUVNyaLKjaenJ7Kyag74zM7Ohlwuh5ubW53vUSqVcHFxqfEiupvZQ9sjuE3l01N/jzrFyf2ImkGpjrejqGlZVLmJiIjA3r17a2zbs2cPwsPDoVBwDgR6cAqZFJ8/0QN2cimik29iw1Fe6SMytU92ncPlm8Vw5+0oaiKilpuioiKcOHECJ06cAFD5qPeJEyeQlla5mOG8efMwbdo04/4zZsxAamoq5syZg3PnzmHlypVYsWIF5s6dK0Z8slIdPZwxd0RHAMCC7Wdx7VaJyImIrFfshZtYHZcKAPj34yG8HUVNQtRyk5CQgNDQUISGhgIA5syZg9DQULz33nsAgMzMTGPRAYCAgADs3LkTMTEx6NGjBxYsWIAlS5bwMXBqci/0D0Qv/xYorr5cbuDtKaKmdqtYh7m/nAQAPNvPH4M6thY5EVkLiWBjgwo0Gg3UajUKCgo4/obqlZpbjFFfHkCJTo/5ozvhLwPbiR2JyGoIgoBX1h3H7jNZaO/uhO2z+0OlkIkdi8xYY35/W9SYG6Lm1NbNEe+O6QIA+PdvyTidXiByIiLrsfHYdew+kwW5VILFT/ZgsaEmxXJDVI+nevtiZFcPlOsFvPZzIkp0FWJHIrJ4abklxrXc3hzeEcFt1CInImvDckNUD4lEgk8e7Q5PFxWu5BRjwfazYkcismh6g4A5/z2BYp0evfxbYMYg3u6lpsdyQ3QPLRzt8PmTIZBIgJ/jr2FXUqbYkYgs1v/tu4iE1Dw4KeX4/IkekEnrnoCV6EGw3BA1QL92rYz/wnx7UxIy8ktFTkRkeQ5fycWS3y8CABZM7Arflg4iJyJrxXJD1EBzhndEiI8aBaXlmPPfE9Dz8XCiBrtVrMPr6xNhEIDHwnzwSKiP2JHIirHcEDWQQibFl5ND4WAnw+Ert7A05pLYkYgsgiAImPvLSdzQaBHY2hEfchZiMjGWG6JG8G/15w/mz/dewOEruSInIjJ/Kw6mYN/5bNjJpfjqqZ5wVMrFjkRWjuWGqJEeC/PBoz3bwCAAr/2ciJuFWrEjEZmtU9fz8a/d5wEA/xjTGV28OXkqmR7LDVEjSSQSfDwxGB3cnZBdqMWbGzj+hqguhWXlmPVTIsr1Ah7u6oln+rYVOxLZCJYbovvgYCfHN1N6wl4hw8FLOfi/fRfFjkRkVgRBwNtRSUi7VYI2rvb416TukEj42Dc1D5YbovvUwcMZCx8JBgB8+ftF/HEpR+REROZjxcEU7EjKhEImwZKnQqF2UIgdiWwIyw3RA3i0pw8m9/KFIACvr09EtqZM7EhEojtyJReLdlWOs3l3TBeEtW0hciKyNSw3RA/og/Fd0cnTGTlFOsz6OREVeoPYkYhEk60pw6yfE6E3CBgf4o1pERxnQ82P5YboAakUMnwzpScc7WSIT7ll/Bcrka0p1xsw66fKJwg7ejjhk0ndOM6GRMFyQ9QEAls74T9P9ABQOdZgc+J1cQMRieBfu84j/uotOCnlWPZMGBzsOJ8NiYPlhqiJPBzsidlD2wMA3o5Kwun0ApETETWfHacy8f3BFADAZ493R2BrJ5ETkS1juSFqQm8M64ghQa2hrTDg5bXHcKtYJ3YkIpM7l6nB3zaeBAC8PDAQDwd7iZyIbB3LDVETkkklWDw5FP5uDkjPL8Wsn45zgDFZtdwiLV5cnYASnR792rnhbyODxI5ExHJD1NTU9gosnxYOBzsZDl3ONU49T2RtdBUGvPLjcaTnl6KtmwO+mdITchl/rZD4+LeQyAQ6ejjjP4+HAAC+O5CCTcc5wJisiyAI+GDbGcSnVA4g/n5aOFwd7MSORQSA5YbIZEZ188KsIX8OMD569ZbIiYiazrrDqfjpSBokEuDLyT3QwcNZ7EhERiw3RCY0Z3hHjAr2hE5fOcA4LbdE7EhED+zQpRx8sO0sAOCtkZ0Q2dlD5ERENbHcEJmQVCrB50/0QLc2atwq1uH51UdRUFoudiyi+3Y1pxiv/nQceoOAiT28MWNQoNiRiGphuSEyMXs7Gb6fHg4vtQqXsosw66fjKOcTVGSBbhXr8OyqeOSXlCPER41PuNI3mSmWG6Jm4OGiwvfTK5+gOnAxBx9sPQNBEMSORdRgZeV6vLj6KK7mlqCNqz2+mx4OlUImdiyiOrHcEDWTrt5qfDk5FBIJ8OORNKyoms2VyNwZDALe3HACx9Py4aKSY/XzveDurBI7FtFdsdwQNaPhXTwwf1RnAMDHO85h68kMkRMR3ds/d57DrtNZsJNJsXxaONq788koMm8sN0TN7MUBAXi2nz8A4K//PYE/LuWIG4ioHqsPXTWuGfXvx7ujb6CbyImI7o3lhqiZSSQSvDe2C8Z090K5XsDLa49xkU0yS7+dycKH284AAP42MggTerQRORFRw7DcEImg8hHxEPQNbIkibQWeXXWUc+CQWTl0OQezf06EQQAm9/LFq4PbiR2JqMFELzfffPMNAgICoFKpEBYWhgMHDtx135iYGEgkklqv8+e5dg9ZHqVchuXTwtHJ0xk5RVpMW3kEOUVasWMR4dT1fLy0OgG6CgOGd/HAxxOD+cg3WRRRy82GDRvwxhtv4J133kFiYiIGDBiAUaNGIS0trd73JScnIzMz0/jq0KFDMyUmalouKgVWP98bbVztcTW3BM//cBSFZZzkj8RzKbsQ01fGo1inR0SgG/7vqVAuhkkWR9S/sZ9//jleeOEFvPjii+jcuTMWL14MX19fLF26tN73ubu7w9PT0/iSyTjXAlkuDxcV1rzQGy0cFDh1vQAv/JCAEl2F2LHIBl3PK8Ez38cjr2qSPs5lQ5ZKtHKj0+lw7NgxjBgxosb2ESNG4NChQ/W+NzQ0FF5eXoiMjER0dHS9+2q1Wmg0mhovInPTrrUT1r7QB84qOeKv3sJf1hxDWble7FhkQ24WajF1RTyyNGVo7+6EVc/1hpNSLnYsovsiWrnJycmBXq+Hh0fNBdc8PDyQlZVV53u8vLywfPlyREVFYdOmTQgKCkJkZCT2799/1++zaNEiqNVq48vX17dJj4OoqQS3UeOH53rDwU6Gg5dy8OqPx6Gr4DINZHp5xTpMWxmPlJxitHG1x9oXeqOlo53YsYjum0QQaQ74jIwMtGnTBocOHUJERIRx+8KFC7F27doGDxIeN24cJBIJtm7dWufntVottNo/B2lqNBr4+vqioKAALi4uD3YQRCYQdzkXz66Kh7bCgNHdPLFkMsc8kOnkFesw5fsjOJupQSsnJX6ZEYGAVo5ixyKqRaPRQK1WN+j3t2g/MVu1agWZTFbrKk12dnatqzn16du3Ly5evHjXzyuVSri4uNR4EZmziHZuWD4tHHYyKXYmZeFvG09Bb+A6VNT08kt0eGZFdbGxw88v9WGxIasgWrmxs7NDWFgY9u7dW2P73r170a9fvwZ/ncTERHh5eTV1PCJRDerYGl9P6Qm5VILNien42y8nUcGVxKkJVRebMxnVxaYvOnhwWQWyDqKOFpszZw6mTp2K8PBwREREYPny5UhLS8OMGTMAAPPmzUN6ejrWrFkDAFi8eDH8/f3RtWtX6HQ6rFu3DlFRUYiKihLzMIhMYngXD3w5ORSvrU/EpsR06PQGfPFkDyh4i4oeUEFJOaauiMfpdA3cHO3wE4sNWRlRy82TTz6J3NxcfPTRR8jMzERwcDB27tyJtm3bAgAyMzNrzHmj0+kwd+5cpKenw97eHl27dsWOHTswevRosQ6ByKTGdPeCTCrB7J+PY/upTOgqDPi/p0OhlPPxXLo/+SWVg4eT0guMxaYjiw1ZGdEGFIulMQOSiMzFvvM3MGNd5dNTQ4JaY+kzYZx/hBotW1OGqSvikXyjEC0dK29FBXmy2JBlsIgBxUTUcEM7eWDF9HCoFFJEJ9/Ei6sTUKrjPDjUcNduleCxZXFIvlEId2cl1v+FxYasF8sNkYUY0KF1jXlwpq08goISLtVA93bhRiEmLT2EtFsl8GvpgI0z+vFWFFk1lhsiC9I30A1rX+gNZ5UcR6/m4fFvDyEjv1TsWGTGTl7LxxPfxiG7UIuOHk74ZUYE/NwcxI5FZFIsN0QWJqxtS/wyIwIeLkpcuFGESUsP4eKNQrFjkRn641IOnv7uMPJLyhHi64oNf4mAh4tK7FhEJsdyQ2SBOnm6IOqVfmjX2hGZBWV4bFkcEq7eEjsWmZGNx64bV/fu184NP77YBy24pALZCJYbIgvl06Jy7ERPP1cUlJZjyvdH8NuZutdlI9shCAI+35OMub+cRIVBwNjuXlj5bC8ugkk2heWGyIK1cLTDjy/2RWQnd2grDJix7hiW778MG5vhgapoK/R4c8MJLNl3CQDw6uB2WDI5lNMGkM1huSGycPZ2Mnw7NQxP9faDIAD/3Hkec385BW0FHxW3JfklOkxdEY8tJzIgk0rwyaPd8NbDnSCVSsSORtTsWG6IrIBcJsU/HwnG++O6QCoBoo5fx9PfHcHNQq3Y0agZXLxRiEe+OYT4lFtwUsqx6tlemNzbT+xYRKJhuSGyEhKJBM89FIAfnqt8VPxYah4mfv0HzmZoxI5GJrQzKRMTvv4DKTnF8FarsPGVCAzs2FrsWESiYrkhsjIDO7bGlpkPIaCVI9LzSzFp6SFsPZkhdixqYnqDgE92ncerPx5HiU6PiEA3bJvdH508uawMEcsNkRVq19oJW159CP3bt0JpuR6v/ZyId7ckcRyOlcgr1uHZVfFYFnsZAPDSgACsfaE33JyUIicjMg8sN0RWSu2gwA/P9cKsIe0BAOsOp+GxpXFIyy0RORk9iBPX8jHuq4M4cDEH9goZljwVinfGdIFcxh/nRNX4fwORFZPLpJg7MgirnuuFFg4KJKUXYMz/HeB8OBbIYBDwTcwlPLb0EK7nlcKvpQM2vdoP40O8xY5GZHZYbohswJAgd+x4bQB6+rmisKwCL689hg+2nkFZOW9TWYKsgjI8s+IIPt2djAqDgDHdvbBtdn909uL4GqK6SAQbm+1Lo9FArVajoKAALi78wUC2pVxvwL92ncf3B1MAAO1aO+KLJ3ugu4+ruMHorvaevYG3Np5EXkk57BUyfDi+Kx4P94FEwvlryLY05vc3yw2RDYpOzsbfN55CdqEWMqkEs4e2x8wh7aHguA2zoSkrx6Kd5/Bz/DUAQFdvFyx5KhTtWjuJnIxIHCw39WC5IaqUV6zDP349je2nMgEA3X3U+PyJELR3dxY5Gf1+7gbe2XwaWZoyAMCL/QPwt4eDoJRzGQWyXSw39WC5Iapp68kM/GPLaRSUlsNOLsWrg9thxqB2XI9IBLeKdfhw2xn8eqJyXiJ/Nwd8Mqk7+ga6iZyMSHwsN/VguSGqLaugDG9vOoWY5JsAgIBWjlgwIRj9O7QSOZltEAQBW09m4KNtZ5FbrINUArw4IBBvDusIezuWTCKA5aZeLDdEdRMEATuTsvDhtjPIrlqTakIPb7wzpjPcnVUip7NeZzIK8OG2s4hPuQUACPJwxqePdUeIr6u4wYjMDMtNPVhuiOpXWFaO/+y5gDVxV2EQAGeVHLOHtse0CH/eqmpCt4p1+GxPMtbHp8EgACqFFK8Obo8Zg9rBTs6B3UR3YrmpB8sNUcOcup6PdzafRlJ6AQCgjas95o7siAkhbSCV8jHk+6Wt0OOnI2n4Yu8FaMoqAABju3th3ujOaONqL3I6IvPFclMPlhuihtMbBGw6fh3/2XPB+OROV28XzBvVmeNxGqlcb0DUsev4v32XkJ5fCgDo4uWCD8Z3Re+AliKnIzJ/LDf1YLkharyycj1W/pGCpdGXUaitvNoQEeiGmUPa46H2bpxQrh56g4Atien48veLSLtVua6Xu7MSrw/rgMm9/CDjVTCiBmG5qQfLDdH9u1Wsw//tu4h1h1NRrq/80RHio8arQ9pjeGcP3q66jbZCj19PZGBZ7GVcuVkMAGjlZIcZg9rhmb5tOX6JqJFYburBckP04NLzS/Hd/itYfzQNZeUGAEAHdye8PKgdxnb3sulf3DlFWqw7nIp1h1ORU6QDALRwUODlQe0wLaItHOzkIickskwsN/VguSFqOjlFWqz6IwVrDqUab1e5OijwWE8fPN3HD4E2tFTAmYwCrD50FVtOZEBXUVn4vNQqTO/njyl9/OCsUoickMiysdzUg+WGqOlpysqx7nAqfjycZhwsCwD92rnh6T5+GNbZwyqv5tws1OLXE+nYeOw6zmcVGrf38HXFC/0D8HCwJ9frImoiLDf1YLkhMh29QUDshWz8dCQN+85nw1D108XRToZhXTwwupsXBnVsbdFFp7CsHDHJN7Hp+HXsv5gDfdVB2smkGN7VA88/FICwti1ETklkfVhu6sFyQ9Q80vNLsSE+DVHH02tczXFSyhHZ2R3DOnugXzs3uDkpRUzZMGm5Jfj9/A38fi4bR1JyjYOpASDUzxWTevpgbHcvuDrYiZiSyLpZVLn55ptv8O9//xuZmZno2rUrFi9ejAEDBtx1/9jYWMyZMwdnzpyBt7c33nrrLcyYMaPB34/lhqh5CYKAE9fyseNUJnYmZSKjoKzG5zt7uaB/ezc81L4Vevm3hKNS/AG36fmlSLh6C8dS8xB3ORcXs4tqfD6wlSNGdfPEoz190M6GxhURicliys2GDRswdepUfPPNN3jooYfw7bff4vvvv8fZs2fh5+dXa/+UlBQEBwfjpZdewssvv4w//vgDr776Kn7++WdMmjSpQd+T5YZIPAaDgBPX87ErKRMHL+XiXKamxuclEqBdayd09XZBsLcaXdu4oKuXGmoH0wzG1RsEXM8rwaXsIlzKLsKp9AIcT81D5h0FTCaVoJd/C0R28kBkZ3ebGihNZC4sptz06dMHPXv2xNKlS43bOnfujIkTJ2LRokW19v/73/+OrVu34ty5c8ZtM2bMwMmTJxEXF9eg78lyQ2Q+coq0OHQ5F39czMHBSzk1bl/dzkUlR5sWDvBpYQ+fFvZo42qPFg52cFLJ4aSsfDkq5VDKpSjXG6A3CCjXC9AbBGgr9Mgp0iG3WIucQh1yirS4WajF1dxiXMkpNj7ZdDuZVIKu3i4Ia9sC4W1bon/7ViYrWETUMI35/S3a9V+dTodjx47h7bffrrF9xIgROHToUJ3viYuLw4gRI2psGzlyJFasWIHy8nIoFLV/+Gi1Wmi1WuPHGo2m1j5EJI5WTkqMD/HG+BBvAEB2YRnOZGhwJr0AZzI0OJ1RgGu3SqEpq4AmU1PrSk9TsJNLEdjKEe3dndDJ0xk927ZAD19XzkdDZMFE+783JycHer0eHh4eNbZ7eHggKyurzvdkZWXVuX9FRQVycnLg5eVV6z2LFi3Chx9+2HTBichk3J1VcA9SYUiQu3FbsbYC6fmlSM8rxfW8ElzPK0V6fikKSstRpK1AsbYCRWUVKNJWoFwvQC6TQCGTQiaVQCGVwE4uRUtHO7g5KdHKSYlWTnZo5aSEX0sHtGvthDYt7LkEApGVEf2fJneuSSMIQr3r1NS1f13bq82bNw9z5swxfqzRaODr63u/cYmomTkq5ejo4YyOHs5iRyEiCyFauWnVqhVkMlmtqzTZ2dm1rs5U8/T0rHN/uVwONze3Ot+jVCqhVJr/o6ZERETUNESbOtPOzg5hYWHYu3dvje179+5Fv3796nxPRERErf337NmD8PDwOsfbEBERke0RdV7wOXPm4Pvvv8fKlStx7tw5vPnmm0hLSzPOWzNv3jxMmzbNuP+MGTOQmpqKOXPm4Ny5c1i5ciVWrFiBuXPninUIREREZGZEHXPz5JNPIjc3Fx999BEyMzMRHByMnTt3om3btgCAzMxMpKWlGfcPCAjAzp078eabb+Lrr7+Gt7c3lixZ0uA5boiIiMj6iT5DcXPjPDdERESWpzG/v7lcLREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVUZdfEEP1hMwajUbkJERERNRQ1b+3G7Kwgs2Vm8LCQgCAr6+vyEmIiIiosQoLC6FWq+vdx+bWljIYDMjIyICzszMkEkmTfm2NRgNfX19cu3bNKtetsvbjA6z/GHl8ls/aj5HHZ/lMdYyCIKCwsBDe3t6QSusfVWNzV26kUil8fHxM+j1cXFys9i8tYP3HB1j/MfL4LJ+1HyOPz/KZ4hjvdcWmGgcUExERkVVhuSEiIiKrwnLThJRKJd5//30olUqxo5iEtR8fYP3HyOOzfNZ+jDw+y2cOx2hzA4qJiIjIuvHKDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNw8gKtXr+KFF15AQEAA7O3t0a5dO7z//vvQ6XT1vk8QBHzwwQfw9vaGvb09Bg8ejDNnzjRT6sZZuHAh+vXrBwcHB7i6ujboPc8++ywkEkmNV9++fU0b9D7dz/FZ0vkDgLy8PEydOhVqtRpqtRpTp05Ffn5+ve8x53P4zTffICAgACqVCmFhYThw4EC9+8fGxiIsLAwqlQqBgYFYtmxZMyW9f405xpiYmFrnSiKR4Pz5882YuOH279+PcePGwdvbGxKJBFu2bLnneyzpHDb2+Czt/C1atAi9evWCs7Mz3N3dMXHiRCQnJ9/zfc19DlluHsD58+dhMBjw7bff4syZM/jiiy+wbNkyzJ8/v973ffrpp/j888/x1Vdf4ejRo/D09MTw4cON616ZE51Oh8cffxyvvPJKo9738MMPIzMz0/jauXOniRI+mPs5Pks6fwDw9NNP48SJE9i9ezd2796NEydOYOrUqfd8nzmeww0bNuCNN97AO++8g8TERAwYMACjRo1CWlpanfunpKRg9OjRGDBgABITEzF//ny89tpriIqKaubkDdfYY6yWnJxc43x16NChmRI3TnFxMUJCQvDVV181aH9LO4eNPb5qlnL+YmNjMXPmTBw+fBh79+5FRUUFRowYgeLi4ru+R5RzKFCT+vTTT4WAgIC7ft5gMAienp7CJ598YtxWVlYmqNVqYdmyZc0R8b6sWrVKUKvVDdp3+vTpwoQJE0yap6k19Pgs7fydPXtWACAcPnzYuC0uLk4AIJw/f/6u7zPXc9i7d29hxowZNbZ16tRJePvtt+vc/6233hI6depUY9vLL78s9O3b12QZH1RjjzE6OloAIOTl5TVDuqYFQNi8eXO9+1jiOazWkOOz5PMnCIKQnZ0tABBiY2Pvuo8Y55BXbppYQUEBWrZsedfPp6SkICsrCyNGjDBuUyqVGDRoEA4dOtQcEZtFTEwM3N3d0bFjR7z00kvIzs4WO1KTsLTzFxcXB7VajT59+hi39e3bF2q1+p55ze0c6nQ6HDt2rMafPQCMGDHirscSFxdXa/+RI0ciISEB5eXlJst6v+7nGKuFhobCy8sLkZGRiI6ONmXMZmVp5/B+Wer5KygoAIB6f++JcQ5ZbprQ5cuX8X//93+YMWPGXffJysoCAHh4eNTY7uHhYfycpRs1ahR+/PFH7Nu3D//5z39w9OhRDB06FFqtVuxoD8zSzl9WVhbc3d1rbXd3d683rzmew5ycHOj1+kb92WdlZdW5f0VFBXJyckyW9X7dzzF6eXlh+fLliIqKwqZNmxAUFITIyEjs37+/OSKbnKWdw8ay5PMnCALmzJmD/v37Izg4+K77iXEOWW7q8MEHH9Q5wOv2V0JCQo33ZGRk4OGHH8bjjz+OF1988Z7fQyKR1PhYEIRa20zlfo6vMZ588kmMGTMGwcHBGDduHHbt2oULFy5gx44dTXgUd2fq4wPEPX9A446xrlz3yiv2OaxPY//s69q/ru3mpDHHGBQUhJdeegk9e/ZEREQEvvnmG4wZMwafffZZc0RtFpZ4DhvKks/frFmzcOrUKfz888/33Le5z6HcJF/Vws2aNQuTJ0+udx9/f3/jf2dkZGDIkCGIiIjA8uXL632fp6cngMom6+XlZdyenZ1dq9maSmOP70F5eXmhbdu2uHjxYpN9zfqY8vjM4fwBDT/GU6dO4caNG7U+d/PmzUblbe5zWJdWrVpBJpPVuoJR35+9p6dnnfvL5XK4ubmZLOv9up9jrEvfvn2xbt26po4nCks7h03BEs7f7NmzsXXrVuzfvx8+Pj717ivGOWS5qUOrVq3QqlWrBu2bnp6OIUOGICwsDKtWrYJUWv/FsICAAHh6emLv3r0IDQ0FUHmfPTY2Fv/6178eOHtDNOb4mkJubi6uXbtWowyYkimPzxzOH9DwY4yIiEBBQQHi4+PRu3dvAMCRI0dQUFCAfv36Nfj7Nfc5rIudnR3CwsKwd+9ePPLII8bte/fuxYQJE+p8T0REBLZt21Zj2549exAeHg6FQmHSvPfjfo6xLomJiaKeq6ZkaeewKZjz+RMEAbNnz8bmzZsRExODgICAe75HlHNosqHKNiA9PV1o3769MHToUOH69etCZmam8XW7oKAgYdOmTcaPP/nkE0GtVgubNm0SkpKShKeeekrw8vISNBpNcx/CPaWmpgqJiYnChx9+KDg5OQmJiYlCYmKiUFhYaNzn9uMrLCwU/vrXvwqHDh0SUlJShOjoaCEiIkJo06aNVRyfIFjW+RMEQXj44YeF7t27C3FxcUJcXJzQrVs3YezYsTX2sZRzuH79ekGhUAgrVqwQzp49K7zxxhuCo6OjcPXqVUEQBOHtt98Wpk6datz/ypUrgoODg/Dmm28KZ8+eFVasWCEoFAph48aNYh3CPTX2GL/44gth8+bNwoULF4TTp08Lb7/9tgBAiIqKEusQ6lVYWGj8/wyA8PnnnwuJiYlCamqqIAiWfw4be3yWdv5eeeUVQa1WCzExMTV+55WUlBj3MYdzyHLzAFatWiUAqPN1OwDCqlWrjB8bDAbh/fffFzw9PQWlUikMHDhQSEpKaub0DTN9+vQ6jy86Otq4z+3HV1JSIowYMUJo3bq1oFAoBD8/P2H69OlCWlqaOAdwD409PkGwrPMnCIKQm5srTJkyRXB2dhacnZ2FKVOm1Hrs1JLO4ddffy20bdtWsLOzE3r27FnjEdTp06cLgwYNqrF/TEyMEBoaKtjZ2Qn+/v7C0qVLmzlx4zXmGP/1r38J7dq1E1QqldCiRQuhf//+wo4dO0RI3TDVjz7f+Zo+fbogCJZ/Dht7fJZ2/u72O+/2n5HmcA4lVWGJiIiIrAKfliIiIiKrwnJDREREVoXlhoiIiKwKyw0RERFZFZYbIiIisiosN0RERGRVWG6IiIjIqrDcEBERkVVhuSGiZqHX69GvXz9MmjSpxvaCggL4+vri3XffrbF99+7dkEgktRbc8/T0hK+vb41t169fh0QiwZ49e+473wcffIAePXrc9/uJyHyw3BBRs5DJZFi9ejV2796NH3/80bh99uzZaNmyJd57770a+/fv3x9yuRwxMTHGbefOnUNZWRk0Gg0uXbpk3B4dHQ2FQoGHHnqo0bkEQUBFRUXjD4iIzBbLDRE1mw4dOmDRokWYPXs2MjIy8Ouvv2L9+vVYvXo17Ozsauzr5OSEXr161Sg3MTEx6N+/P/r3719re+/eveHo6AhBEPDpp58iMDAQ9vb2CAkJwcaNG2vsK5FI8NtvvyE8PBxKpRJr167Fhx9+iJMnT0IikUAikeCHH34AUHll6S9/+Qvc3d3h4uKCoUOH4uTJk6b8YyKiByQXOwAR2ZbZs2dj8+bNmDZtGpKSkvDee+/d9XbQkCFDahST6OhoDB48GAaDAdHR0XjxxReN26dMmQIAePfdd7Fp0yYsXboUHTp0wP79+/HMM8+gdevWGDRokPFrvfXWW/jss88QGBgIlUqFv/71r9i9ezf+97//AQDUajUEQcCYMWPQsmVL7Ny5E2q1Gt9++y0iIyNx4cIFtGzZ0kR/SkT0QEy6LCcRUR3OnTsnABC6desmlJeX33W/PXv2CACEjIwMQRAEwd3dXYiPjxcOHz4seHt7C4IgCGlpaQIA4ffffxeKiooElUolHDp0qMbXeeGFF4SnnnpKEIQ/V23esmVLjX3ef/99ISQkpMa233//XXBxcRHKyspqbG/Xrp3w7bff3texE5Hp8coNETW7lStXwsHBASkpKbh+/Tr8/f0xY8YMrFu3zrhPUVERHnroIdjZ2SEmJgYhISEoLS1Fz549IQgCNBoNLl68iLi4OCiVSvTr1w9JSUkoKyvD8OHDa3w/nU6H0NDQGtvCw8PvmfPYsWMoKiqCm5tbje2lpaW4fPnyA/wJEJEpsdwQUbOKi4vDF198gV27duHTTz/FCy+8gP/973/46KOPMHfu3Br7Ojg4oHfv3oiOjsatW7fQv39/yGQyAEC/fv0QHR2NuLg4REREQKVSwWAwAAB27NiBNm3a1PhaSqWyxseOjo73zGowGODl5VVjfE81V1fXRhw1ETUnlhsiajalpaWYPn06Xn75ZQwbNgwdO3ZEcHAwvv32W8yYMQPu7u613jNkyBCsX78eeXl5GDx4sHH7oEGDEBMTg7i4ODz33HMAgC5dukCpVCItLa3G+JqGsLOzg16vr7GtZ8+eyMrKglwuh7+/f6OPl4jEwaeliKjZvP322zAYDPjXv/4FAPDz88N//vMf/O1vf8PVq1frfM+QIUNw8eJF7N69u0ZhGTRoELZv346rV69iyJAhAABnZ2fMnTsXb775JlavXo3Lly8jMTERX3/9NVavXl1vNn9/f6SkpODEiRPIycmBVqvFsGHDEBERgYkTJ+K3337D1atXcejQIbz77rtISEhomj8UImp6Yg/6ISLbEBMTI8hkMuHAgQO1PjdixAhh6NChgsFgqPW50tJSQalUCk5OTjUGH2u1WsHBwUGwt7cXtFqtcbvBYBC+/PJLISgoSFAoFELr1q2FkSNHCrGxsYIg/DmgOC8vr8b3KSsrEyZNmiS4uroKAIRVq1YJgiAIGo1GmD17tuDt7S0oFArB19dXmDJlipCWltYEfypEZAoSQRAEsQsWERERUVPhbSkiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVfl/UZToYXUgvYIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt # lade matplotlib als Bibliothek\n", + "import numpy as np\n", + "x = np.linspace(-2, 2, 170) # definiere x\n", + "xQuadrat = x**2 # berechen x^2\n", + "\n", + "# ### Anfang Grundgerüst ( mit # kann man Kommentare schreiben )\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_title(\"Parabel\") # Titel\n", + "ax.set_xlabel(\"X-Werte\") # x-Achsenbeschriftrung\n", + "ax.set_ylabel(\"y-Werte\") # y-Achsenbeschriftung\n", + "\n", + "ax.plot(x, xQuadrat) # x-Wert hier: x, y Wert hier: xQuadrat\n", + "\n", + "plt.show()\n", + "\n", + "# ### Ende Grundgerüst" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)** Machen Sie sich mit dem Grundgerüst vertraut, indem Sie \n", + " - `x` mit Werten Ihrer Wahl erweitern\n", + " - einen geeigneten Titel\n", + " - geeignete x- und y- Achsenbeschriftung wählen.\n", + " \n", + "Möchte man mehrere Kurven in einem Diagramm darstellen, so muss `ax.plot()` lediglich erneut aufgerufen werden. \n", + "Dabei ist es nützlich diese Kurven in einer Legende zu unterscheiden:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.961375Z", + "start_time": "2019-11-01T10:22:27.514251Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlF0lEQVR4nO3dd3wUdf7H8demF1JII4UEQgu9I72JoqiI9cSC2O5sp6d43ime7e6nWE7Pgh5iwV5OAbsoqBQFpPcOIZSQQoBUUnd+fwy7IZJAAklmd/N+Ph77mNnd2d3P7Ab2vd/5zvdrMwzDQERERMRNeVldgIiIiMiZUJgRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRaULefvttbDYbNpuN+fPnn3C/YRi0a9cOm83GiBEj6vz8rVu35qKLLjrjOj/55BO6dOlCYGAgNpuNNWvWnPFzHm/+/PnYbDY+++yzen1em83GY489VufHpaen89hjj9X7foo0FQozIk1QSEgIb7755gm3L1iwgJ07dxISEmJBVabs7GwmTJhA27ZtmTNnDkuWLKFDhw6W1dMY0tPTefzxxxVmRE6TwoxIE3TVVVcxc+ZM8vLyqtz+5ptvMnDgQJKSkhq9pqNHj2IYBtu2baOsrIzrrruO4cOHM2DAAIKCghq9HhFxHwozIk3Q1VdfDcBHH33kvC03N5eZM2dy0003nbB9aWkp//d//0fHjh3x9/cnOjqaG2+8kezs7Gqff86cOfTu3ZvAwEA6duzIW2+9VeV+x+GuH374gZtuuono6GiCgoK4+uqrGTJkCGAGruMPd61YsYLx48fTunVrAgMDad26NVdffTVpaWknvP7+/fv505/+RGJiIn5+fsTHx3PFFVeQmZlZZbuysjIeeugh4uPjCQ0N5ZxzzmHr1q1VthkxYgRdu3Zl0aJFDBgwgMDAQBISEnj44YepqKg4xTsNGzZsYNy4cTRv3pyAgAB69uzJO++847x//vz59OvXD4Abb7zReRjwdA5XiTRVCjMiTVBoaChXXHFFlZDx0Ucf4eXlxVVXXVVlW7vdzrhx43jqqae45ppr+Oabb3jqqaeYO3cuI0aM4OjRo1W2X7t2Lffddx/33nsvX3zxBd27d+fmm29m4cKFJ9Rx00034evry3vvvcdnn33GE088wSuvvALAk08+yZIlS3j11VcB2L17NykpKbzwwgt8//33PP300xw4cIB+/fpx8OBB53Pu37+ffv36MXv2bCZNmsR3333HCy+8QFhYGIcPH67y+pMnTyYtLY033niD6dOns337dsaOHXtCSMnIyGD8+PFce+21fPHFF1xxxRX83//9H3/5y19O+j5v3bqVQYMGsXHjRl566SVmzZpF586dueGGG3jmmWcA6N27NzNmzADgH//4B0uWLGHJkiXccsstJ31uETmOISJNxowZMwzAWL58ufHzzz8bgLFhwwbDMAyjX79+xg033GAYhmF06dLFGD58uGEYhvHRRx8ZgDFz5swqz7V8+XIDMF599VXnba1atTICAgKMtLQ0521Hjx41IiIijFtvvfWEOq6//voTanTU9emnn550X8rLy42CggIjODjYePHFF52333TTTYavr6+xadOmGh/reI0LLrigyu3/+9//DMBYsmSJ87bhw4cbgPHFF19U2faPf/yj4eXlVWVfAePRRx91Xh8/frzh7+9v7Nmzp8pjx4wZYwQFBRlHjhwxDKPyvZwxY8ZJ91lEqqeWGZEmavjw4bRt25a33nqL9evXs3z58moPMX399deEh4czduxYysvLnZeePXsSGxt7wllRPXv2rNLnJiAggA4dOlR7OOjyyy+vdb0FBQX8/e9/p127dvj4+ODj40OzZs0oLCxk8+bNzu2+++47Ro4cSadOnU75nBdffHGV6927dwc4odaQkJATtr3mmmuw2+3Vtjg5/PTTT4waNYrExMQqt99www0UFRWxZMmSU9YoIqfmY3UBImINm83GjTfeyEsvvURxcTEdOnRg6NChJ2yXmZnJkSNH8PPzq/Z5jj/EAxAZGXnCNv7+/iccjgKIi4urdb3XXHMNP/74Iw8//DD9+vUjNDQUm83GBRdcUOW5s7OzadmyZa2e8/e1+vv7A5xQa4sWLU54bGxsLAA5OTk1Pn9OTk61+xgfH3/Kx4pI7SnMiDRhN9xwA4888gjTpk3jiSeeqHabqKgoIiMjmTNnTrX3n8lp3DabrVbb5ebm8vXXX/Poo4/ywAMPOG8vKSnh0KFDVbaNjo5m3759p11TdX7fcRjMfjRQfXhziIyM5MCBAyfcnp6eDpjvrYicOYUZkSYsISGB+++/ny1btjBx4sRqt7nooov4+OOPqaiooH///o1coclms2EYhrPlxOGNN944obPumDFjeO+999i6dSspKSn18vr5+fl8+eWXVQ41ffjhh3h5eTFs2LAaHzdq1Chmz55Nenq6szUG4N133yUoKIgBAwYANbcIiUjtKMyINHFPPfXUSe8fP348H3zwARdccAF/+ctfOOuss/D19WXfvn38/PPPjBs3jksvvbRBawwNDWXYsGE8++yzREVF0bp1axYsWMCbb75JeHh4lW3/+c9/8t133zFs2DAmT55Mt27dOHLkCHPmzGHSpEl07Nixzq8fGRnJ7bffzp49e+jQoQPffvstr7/+OrfffvtJx+R59NFH+frrrxk5ciSPPPIIERERfPDBB3zzzTc888wzhIWFAdC2bVsCAwP54IMP6NSpE82aNSM+Pr5KABKRmqkDsIiclLe3N19++SWTJ09m1qxZXHrppVxyySU89dRTBAQE0K1bt0ap48MPP2TkyJH87W9/47LLLmPFihXMnTvXGQgcEhISWLZsGRdddBFPPfUU559/PnfddRe5ublERESc1mvHxsby4Ycf8s4773DxxRfzv//9j8mTJ/PSSy+d9HEpKSksXryYlJQU7rzzTi655BI2bNjAjBkzuP/++53bBQUF8dZbb5GTk8Po0aPp168f06dPP61aRZoim2EYhtVFiIi4qhEjRnDw4EE2bNhgdSkiUgO1zIiIiIhbU5gRERERt6bDTCIiIuLW1DIjIiIibk1hRkRERNyawoyIiIi4NY8fNM9ut5Oenk5ISEith04XERERaxmGQX5+PvHx8Xh5nbztxePDTHp6+gkz1oqIiIh72Lt37yknj/X4MOOYBG/v3r2EhoZaXI2IiIjURl5eHomJibWazNbjw4zj0FJoaKjCjIiIiJupTRcRdQAWERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm7N0jCzcOFCxo4dS3x8PDabjc8///yEbTZv3szFF19MWFgYISEhDBgwgD179jR+sSIiIuKSLA0zhYWF9OjRg6lTp1Z7/86dOxkyZAgdO3Zk/vz5rF27locffpiAgIBGrlRERERclc0wDMPqIsCcSGr27NlccsklztvGjx+Pr68v77333mk/b15eHmFhYeTm5tbvRJN2O+TuBS9vCDv51OQiIiIeKe8AlBdDeCvwqt/2kbp8f7tsnxm73c4333xDhw4dOO+884iJiaF///7VHoo6XklJCXl5eVUuDWLeI/Bid1jyasM8v4iIiKtbOQNe6gnf3GtpGS4bZrKysigoKOCpp57i/PPP54cffuDSSy/lsssuY8GCBTU+bsqUKYSFhTkviYmJDVNgVIdjhW5smOcXERFxdZnHvgOjUiwtw2XDjN1uB2DcuHHce++99OzZkwceeICLLrqIadOm1fi4Bx98kNzcXOdl7969DVNgTGdzmbW5YZ5fRETE1Tm+A2M6WVqGj6WvfhJRUVH4+PjQuXPnKrd36tSJX375pcbH+fv74+/v39DlQXRHc1mQCYU5EBzZ8K8pIiLiKkqL4NAuc71FF0tLcdmWGT8/P/r168fWrVur3L5t2zZatWplUVXH8W9mdngCyNpkbS0iIiKN7eBWwICgSAiOtrQUS1tmCgoK2LFjh/N6amoqa9asISIigqSkJO6//36uuuoqhg0bxsiRI5kzZw5fffUV8+fPt67o47XoAkfSzDCTPNTqakRERBpP5rEf8jGdwWaztBRLW2ZWrFhBr1696NWrFwCTJk2iV69ePPLIIwBceumlTJs2jWeeeYZu3brxxhtvMHPmTIYMGWJl2ZUcxwjVMiMiIk1N1nFhxmKWtsyMGDGCUw1zc9NNN3HTTTc1UkV15PgAMxVmRESkiXGEmRbWhxmX7TPjFo4/o8k1xh4UERFpHM4zmRRm3FtkO/DyhdJ8czRgERGRpqDoEOQfMNcdZ/daSGHmTPj4QVR7c13jzYiISFPh+M4LS4KAepwq6DQpzJwpZ78ZjQQsIiJNhAv1lwGFmTPnPKNJLTMiItJEOM9ksnbkXweFmTPlGPVQp2eLiEhT4RxjxtqRfx0UZs6UI5Ue3AYVZdbWIiIi0tAMw2XmZHJQmDlTYUng1wwqSiFnp9XViIiINKy8/VCSC14+ENXB6moAhZkz5+VVeVqaDjWJiIinc7TKRLYzz+p1AQoz9cHRm1thRkREPJ3j7F0XGCzPQWGmPhw/ErCIiIgnc6GRfx0UZuqDxpoREZGmIuvYd52LjDEDCjP1wxFmDu+G0kJLSxEREWkwFeWQvc1cd5EzmUBhpn40i4bgaMCA7C1WVyMiItIwDu2CihLwDYLw1lZX46QwU180ErCIiHg6x4ku0R3Ns3ldhOtU4u4coyBm6owmERHxUC42J5ODwkx9cbbMKMyIiIiHcs7JpDDjmTRHk4iIeLpMhRnPFp1iLgsyoTDH2lpERETqW9lRswMwKMx4LP8QCG9lrqt1RkREPE32FsCAoEhoFmN1NVUozNQnjQQsIiKe6viRf202a2v5HYWZ+uSco0kjAYuIiIdxwTmZHBRm6pNaZkRExFM5W2ZcZ+RfB4WZ+uSco2kTGIa1tYiIiNQnFz0tGxRm6ldUe/D2g9J8OJJmdTUiIiL1o/Ag5B8AbC43YB4ozNQvb9/K5reM9dbWIiIiUl8c32kRbcyzd12Mwkx9a9HNXCrMiIiIp3B8p8V2tbaOGijM1LdYhRkREfEwzjDTzdo6aqAwU98UZkRExNM4w0x3a+uogcJMfXM0weXuhaJD1tYiIiJypsqK4eA2c10tM01EQFjltAaZG6ytRURE5ExlbwajwpzGICTO6mqqZWmYWbhwIWPHjiU+Ph6bzcbnn39e47a33norNpuNF154odHqO2061CQiIp7i+P4yLjaNgYOlYaawsJAePXowderUk273+eef89tvvxEfH99IlZ0hxzHFDLXMiIiIm3Pxzr8APla++JgxYxgzZsxJt9m/fz9//vOf+f7777nwwgsbqbIz5Og3o5YZERFxd47vshYKM6fFbrczYcIE7r//frp06VKrx5SUlFBSUuK8npeX11Dl1cyRXrO3QHkp+Pg1fg0iIiJnym6vPMrgwi0zLt0B+Omnn8bHx4e777671o+ZMmUKYWFhzktiYmIDVliDsESzI7C9zAw0IiIi7ujIbnOKHm9/c8oeF+WyYWblypW8+OKLvP3229jq0OHowQcfJDc313nZu3dvA1ZZA5vtuH4zOtQkIiJuyvEdFtPJnLLHRblsmFm0aBFZWVkkJSXh4+ODj48PaWlp3HfffbRu3brGx/n7+xMaGlrlYgmd0SQiIu7ODQ4xgQv3mZkwYQLnnHNOldvOO+88JkyYwI033mhRVXWgMCMiIu7OxUf+dbA0zBQUFLBjxw7n9dTUVNasWUNERARJSUlERkZW2d7X15fY2FhSUlIau9S6Oz7MGIbLnpsvIiJSIzc4LRssDjMrVqxg5MiRzuuTJk0CYOLEibz99tsWVVVPolLAyxdKcs2pDcKTrK5IRESk9ooOQd4+c71F7c4otoqlYWbEiBEYhlHr7Xfv3t1wxdQ3Hz+I7giZ681kqzAjIiLuxNEq07w1BFjU/7SWXLYDsEdQvxkREXFXbnKICRRmGpbCjIiIuCvHZMku3vkXFGYaljPMrLO2DhERkbpSy4wAlXM0HdkDR49YWoqIiEitlZdUjmCvMNPEBTaHsGMdfzM1g7aIiLiJ7C1gLze/x0ITrK7mlBRmGppm0BYREXfjnCm7q1uMk6Yw09Cc/WbUMiMiIm7CTUb+dVCYaWjqBCwiIu7GTeZkclCYaWiOP4TsLVBeam0tIiIip2IYbnUmEyjMNLzwVuAfChWlcHCr1dWIiIic3JE95lQ83n4Q1cHqampFYaah2WyVyfaADjWJiIiLO7DWXEZ3NKfmcQMKM40hvpe5TF9tbR0iIiKn4viucnx3uQGFmcYQ19NcHlhjZRUiIiKn5viuiu9pZRV1ojDTGBzpNmM9VJRbW4uIiEhNDEMtM1KDiDbgFwLlxZXDQ4uIiLiaI3vg6GHw8oWYzlZXU2sKM43By6uyuU79ZkRExFU5vqNadAEff2trqQOFmcbiCDPqNyMiIq7KDQ8xgcJM43F0AlbLjIiIuCo37PwLCjONx9kJeANUlFlbi4iIyO8ZBqSvMdfVMiPVimgD/mFQUQJZm62uRkREpKrDu6H4iDnyb3Qnq6upE4WZxmKzQXwPc12HmkRExNU4O/92dZuRfx0UZhqTBs8TERFX5ez829PSMk6Hwkxj0rQGIiLiqpydf92rvwwozDQuxx9I5kYoL7W2FhEREQfDgPRjE0wqzMhJNW8NAeFQUQpZm6yuRkRExHRoF5Tkgre/OVu2m1GYaUw2mwbPExER1+Po/hDbDbx9ra3lNCjMNDYNniciIq7GTQfLc1CYaWzOTsBrLC1DRETEyU0Hy3NQmGlsjtSbuRHKSywtRUREBLu9Msw4jh64GYWZxhbeCgKbg73MDDQiIiJWOrQLSvPBJ8AtO/+Cwkzjs9kqm/HUCVhERKzm7PzbHbx9rK3lNFkaZhYuXMjYsWOJj4/HZrPx+eefO+8rKyvj73//O926dSM4OJj4+Hiuv/560tPTrSu4vqgTsIiIuAo37/wLFoeZwsJCevTowdSpU0+4r6ioiFWrVvHwww+zatUqZs2axbZt27j44ostqLSeqROwiIi4Cuc0Bu7Z+RfA0vakMWPGMGbMmGrvCwsLY+7cuVVue/nllznrrLPYs2cPSUlJjVFiw3Ck36xNUFYMvgGWliMiIk2U3Q4Hjo3866adf8HiMFNXubm52Gw2wsPDa9ympKSEkpLKs4Ty8vIaobI6CkuEoEgoyoGsjZDQx+qKRESkKcrZAaUF4BsEUR2srua0uU0H4OLiYh544AGuueYaQkNDa9xuypQphIWFOS+JiYmNWGUt2WzqNyMiItarMvKvW7VvVOEWYaasrIzx48djt9t59dVXT7rtgw8+SG5urvOyd+/eRqqyjjSDtoiIWM3xHeTGh5jADQ4zlZWV8Yc//IHU1FR++umnk7bKAPj7++Pv799I1Z0Bx6GlfSutrUNERJqu/SvMZcu+1tZxhly6ZcYRZLZv3868efOIjIy0uqT64/jDyd4CxS7Yr0dERDxbeUll5183DzOWtswUFBSwY8cO5/XU1FTWrFlDREQE8fHxXHHFFaxatYqvv/6aiooKMjIyAIiIiMDPz8+qsutHsxgIT4IjeyB9FbQZYXVFIiLSlGRsgIpS84SU5slWV3NGLG2ZWbFiBb169aJXL7P/yKRJk+jVqxePPPII+/bt48svv2Tfvn307NmTuLg452Xx4sVWll1/WvYzl/uWW1uHiIg0PY7vnoS+5okpbszSlpkRI0ZgGEaN95/sPo/Qsh9smAn7VlhdiYiINDWOMOP4Ye3GXLrPjMdLOHaMct8K8PTgJiIirsXZ+df9xzpTmLFSXHfw9oOig3B4t9XViIhIU1GQfex7x+YRA7cqzFjJx9+cpRR0qElERBqPo1UmOgUCwqytpR4ozFjNcTrcfoUZERFpJI4f0AnufUq2g8KM1XRGk4iINDZn51+FGakPjj+kA+vMGbRFREQakr0C9q8y1z3gTCZQmLFeeCsIigJ7GWSst7oaERHxdAe3QWk++AZDTCerq6kXCjNWs9l0qElERBqPc7C83uDlbW0t9URhxhU4DjUpzIiISEPzsP4yoDDjGnRGk4iINJZ9K82lh5zJBAozriG+N2AzJ53Mz7S6GhER8VQl+ZC1yVxXy4zUq4DQyk5Yap0REZGGsn8VYEBYEoTEWl1NvVGYcRWO4aQ1ErCIiDQUD5qP6XgKM65CZzSJiEhDc/xg9pDxZRwUZlyF4w8rfbU5oJGIiEh9MozjzmRSmJGGEJ0Cfs2gtACyt1hdjYiIeJoje6AwG7x8Kyc59hAKM67Cy9scwAh0qElEROqf47slthv4BlhbSz1TmHElCRo8T0REGsj+Y+PLeNAp2Q4KM67E2QlYZzSJiEg989D+MqAw41ocf2DZW+HoYWtrERERz1F2FNLXmOtqmZEG1SwaItoCBuzVoSYREakn6avBXgbNWkDzZKurqXcKM66m1UBzuWeJtXWIiIjncHynJA0Em83aWhqAwoyrSVKYERGRepZ2XJjxQAozrsbxh7Z/JZQVW1uLiIi4P3sF7F1mricNsLaWBqIw42oi2kBwNFSUwoE1VlcjIiLuLmszlOSaA7O26Gp1NQ1CYcbV2GyVyVmHmkRE5Ew5vkta9gNvH2traSAKM67I2W9mqbV1iIiI+3N8l3hofxlQmHFNx4cZu93aWkRExH0ZRmXLTCuFGWlMsd3BNxiKj2jSSREROX25eyFvP3j5QEIfq6tpMAozrsjbp3KERvWbERGR0+U4xBTXA/yCra2lASnMuCr1mxERkTO1x7PHl3GwNMwsXLiQsWPHEh8fj81m4/PPP69yv2EYPPbYY8THxxMYGMiIESPYuHGjNcU2NucZTQozIiJympydfz1zfBkHS8NMYWEhPXr0YOrUqdXe/8wzz/D8888zdepUli9fTmxsLOeeey75+fmNXKkFWvYDmzfk7oHcfVZXIyIi7qboEGRtMtfVMtNwxowZw//93/9x2WWXnXCfYRi88MILPPTQQ1x22WV07dqVd955h6KiIj788EMLqm1k/s0grru5rtYZERGpK8eov5HtITjK2loamMv2mUlNTSUjI4PRo0c7b/P392f48OEsXry4xseVlJSQl5dX5eK2NE+TiIicLmd/Gc8+xAQuHGYyMjIAaNGiRZXbW7Ro4byvOlOmTCEsLMx5SUxMbNA6G5T6zYiIyOlqAoPlObhsmHGw/W6qcsMwTrjteA8++CC5ubnOy969exu6xIaTeCzMZG6Eo0csLUVERNxIWTGkrzLX1TJjndjYWIATWmGysrJOaK05nr+/P6GhoVUubiukhTnxJAbsW251NSIi4i7SV5sTFgfHHPse8WwuG2aSk5OJjY1l7ty5zttKS0tZsGABgwYNsrCyRpZ0bF/Tau4nJCIiUsWeY98ZrQaaExh7OEunzywoKGDHjh3O66mpqaxZs4aIiAiSkpK45557ePLJJ2nfvj3t27fnySefJCgoiGuuucbCqhtZ0gBY8776zYiISO01of4yYHGYWbFiBSNHjnRenzRpEgATJ07k7bff5m9/+xtHjx7ljjvu4PDhw/Tv358ffviBkJAQq0pufI4/xP0robwEfPytrUdERFyb3Q57fjPXm0B/GQCbYRiG1UU0pLy8PMLCwsjNzXXP/jOGAc+2g6KDcNP3TeYPU0RETlPGBpg22Jyw+IE95nx/bqgu398u22dGjrHZoNWxfjO7F1lbi4iIuL7dv5jLpP5uG2TqSmHGHSQPM5epCjMiInIKjh++rYdaW0cjUphxB44/yL2/mf1mREREqmOvqGyZcfwQbgIUZtxBdIo5VkB5scabERGRmmWsh+Ij4BcCcT2trqbRKMy4A5sNko+1zuhQk4iI1MRxiKnVoCbTXwYUZtyH41CTOgGLiEhNHD94k5tOfxlQmHEfjmOf+5ZDaZG1tYiIiOupKK8cLb4Jdf4FhRn3EdEGQuLNuTb2/mZ1NSIi4moOrIHSfAgIg9huVlfTqBRm3IXNVtk6o0NNIiLye6kLzWXroeDlbW0tjUxhxp2oE7CIiNSkCY4v46Aw404cf6Dpq6Ak39paRETEdZSXVk4u2cQ6/4LCjHtp3grCk8Berlm0RUSk0v6VUFYEQZEQ3cnqahqdwoy7cU5tsNDaOkRExHUcf4jJq+l9tTe9PXZ3rdUJWEREfsfxA7cJHmIChRn34/hDPbAWjh6xtBQREXEBZcWwd5m53rrpzMd0PIUZdxMaDxFtwbBXDo4kIiJN175lUFECzVpAVHurq7GEwow7StbUBiIickzqcf1lbDZra7GIwow7cnYCVpgREWnyHD9sk5vmISZQmHFPjvFmMtdDYY61tYiIiHVKC2HfCnO9iXb+BYUZ99QsBqI7mutpv1hbi4iIWGfPUrCXQWhLaJ5sdTWWUZhxV47WGY03IyLSdDkPMTXd/jKgMOO+2owwlzt/srQMERGxkOM7wPGd0EQpzLir5GHg5QOHdsGhVKurERGRxlaQbY45BtD2bGtrsZjCjLsKCIWWZ5nrap0REWl6dv1sLmO7mX0pmzCFGXfmSOIKMyIiTc+OH81lE2+VAYUZ99bu2B/wrgVQUWZtLSIi0njs9sofsm1HWVuLC1CYcWdxPSEwAkrzYd9yq6sREZHGkrkBCrPANwiSBlhdjeUUZtyZlze0HWmuO5obRUTE8zlaZVoPBR9/a2txAQoz7s7RvKh+MyIiTcfOYz9g2+kQEyjMuD9Hx6/01ZraQESkKSgtNEf+BfWXOabWYWbfvn0NWYecrtA4iOkCGJWn6YmIiOfa/QtUlEJ4EkS2tboal1DrMNO1a1fee++9hqzlBOXl5fzjH/8gOTmZwMBA2rRpwz//+U/sdnuj1uHy2ukUbRGRJsN5SvaoJj2FwfFqHWaefPJJ7rzzTi6//HJychrncMbTTz/NtGnTmDp1Kps3b+aZZ57h2Wef5eWXX26U13cbx/ebMQxraxERkYal/jInqHWYueOOO1i7di2HDx+mS5cufPnllw1ZFwBLlixh3LhxXHjhhbRu3ZorrriC0aNHs2LFigZ/bbeSNBB8AiH/AGRtsroaERFpKIfTIGcH2LzNaW0EAJ+6bJycnMxPP/3E1KlTufzyy+nUqRM+PlWfYtWqVfVW3JAhQ5g2bRrbtm2jQ4cOrF27ll9++YUXXnihxseUlJRQUlLivJ6Xl1dv9bgs3wBoPRh2zDNbZ1p0sboiERFpCI7uBIlnQUCYtbW4kDqFGYC0tDRmzpxJREQE48aNOyHM1Ke///3v5Obm0rFjR7y9vamoqOCJJ57g6quvrvExU6ZM4fHHH2+wmlxW21FmmNnxIwy6y+pqRESkIezUFAbVqVMSef3117nvvvs455xz2LBhA9HR0Q1VFwCffPIJ77//Ph9++CFdunRhzZo13HPPPcTHxzNx4sRqH/Pggw8yadIk5/W8vDwSExMbtE6X0G4UfA+kLYbSIvALsroiERGpTxXlsGuhua5TsquodZg5//zzWbZsGVOnTuX6669vyJqc7r//fh544AHGjx8PQLdu3UhLS2PKlCk1hhl/f3/8/ZvgaIhRHSC0JeTtMwNN+3OsrkhEROrT/hVQkguBzSG+p9XVuJRadwCuqKhg3bp1jRZkAIqKivDyqlqit7e3Ts2ujs123CnamtpARMTjOE7JbjPSnM5GnGrdMjN37tyGrKNaY8eO5YknniApKYkuXbqwevVqnn/+eW666aZGr8UttB0Fq97VPE0iIp7I0flXp2SfoOF679aDl19+mYcffpg77riDrKws4uPjufXWW3nkkUesLs01tRlhnq53cCsc3g3NW1tckIiI1IvCg7B/pbmu/jIncOkwExISwgsvvHDSU7HlOIHh5pgzab/A1jkw4DarKxIRkfqwfS5gQGx3cxobqUITTXqalDHmctt31tYhIiL1Z/v35rLD+dbW4aIUZjyNI8zs/hWKc62tRUREzlxFWWVfyA7nWVuLi1KY8TSRbSGyPdjL1BFYRMQT7FkKJXkQFAXxva2uxiUpzHiilGPNkNvmWFuHiIicOcf/5e1Hg5e+tqujd8UTdTh2qGn7D+aIkSIi4r62/2AudYipRgozniixvzlC5NHDsG+Z1dWIiMjpytkJB7eBlw+0HWl1NS5LYcYTefuYzZEAW3VWk4iI23K0yrQapFmyT0JhxlM5Tt9TmBERcV+O/8Pb6xDTySjMeKp2o8xmyZztZjOliIi4l6NHIO1Xc73jBZaW4uoUZjxVQBi0Gmyuq3VGRMT9bJ8L9nKI7gQRbayuxqUpzHgy52jAOkVbRMTtbP3GXKpV5pQUZjyZo99M2mLzzCYREXEP5SWwfZ65nnKhtbW4AYUZTxaRbDZPGhWV/yhERMT17V4EpfnQLBbie1ldjctTmPF0ztGA1W9GRMRtbPnWXKacr1F/a0HvkKdzjgY8z5ysTEREXJthVJ64oUNMtaIw4+la9oWgSCjJNfvOiIiIazuwBvLTwTcYkodZXY1bUJjxdF7elWc1bf7S2lpEROTUNn9lLtufA74B1tbiJhRmmoLOl5rLzV+BvcLaWkREpGaGAZuO/fDsdLG1tbgRhZmmIHmYOYheQSbsWWp1NSIiUpPsrebI7d5+lXPsySkpzDQFPn6Vncg2fWFtLSIiUjNHd4C2Z0NAqLW1uBGFmaai8zhzuflLsNutrUVERKrnCDOdxlpbh5tRmGkq2o4E/1DIPwD7lltdjYiI/N6hVMhYDzZvSNEUBnWhMNNU+PhXntW06XNLSxERkWo4zmJqPQSCIqytxc0ozDQljkNNm77QoSYREVfjCDM6xFRnCjNNSduzwa8Z5O2H9FVWVyMiIg65+2DfMsCmMHMaFGaaEt9A6HCeua5DTSIirsNxpmmrQRASa20tbkhhpqnpfIm53PSFOTiTiIhYb8Msc9nlUmvrcFMKM01Nu3PANwiO7IH01VZXIyIih9Ng/wqweWnU39OkMNPU+AVVjiqpAfRERKznPMQ0GEJaWFuLm1KYaYqOP6tJh5pERKy1cba51CGm06Yw0xS1Hw0+AXD42ABNIiJijcO7zbNLdYjpjLh8mNm/fz/XXXcdkZGRBAUF0bNnT1auXGl1We7Nvxm0P9dc11lNIiLWcbTKtB4KzaKtrcWNuXSYOXz4MIMHD8bX15fvvvuOTZs28dxzzxEeHm51ae7PcVbThpk61CQiYpX1M82lDjGdER+rCziZp59+msTERGbMmOG8rXXr1tYV5ElSxoBvsNnEuX8ltOxrdUUiIk1L1mbIXA9evpV9GeW0uHTLzJdffknfvn258soriYmJoVevXrz++usnfUxJSQl5eXlVLlINv2DoeKG5vv5Ta2sREWmK1n9mLtufq7mYzpBLh5ldu3bx3//+l/bt2/P9999z2223cffdd/Puu+/W+JgpU6YQFhbmvCQmJjZixW6m25XmcsMsqCi3thYRkabEMCp/SHa7wtpaPIDNMFy3w4Sfnx99+/Zl8eLFztvuvvtuli9fzpIlS6p9TElJCSUlJc7reXl5JCYmkpubS2hoaIPX7FYqyuC5FCjKgQmzzbmbRESk4e1dDm+eYx7uv3+HOQaYVJGXl0dYWFitvr9dumUmLi6Ozp07V7mtU6dO7Nmzp8bH+Pv7ExoaWuUiNfD2rex0tk6HmkREGo2jVabTRQoy9cClw8zgwYPZunVrldu2bdtGq1atLKrIAzkONW3+CsqOWluLiEhTUFEOG4/NxeT4P1jOiEuHmXvvvZelS5fy5JNPsmPHDj788EOmT5/OnXfeaXVpnqPlWRCWBKX5sPU7q6sREfF8u+ZDYTYERUKbEVZX4xFcOsz069eP2bNn89FHH9G1a1f+9a9/8cILL3DttddaXZrn8PKC7sd+Gaz7xNpaRESagrUfmcuul5uH++WMuXQH4PpQlw5ETdbB7TC1L9i84b4t0CzG6opERDxTcS78uwOUF8Mff4aE3lZX5LI8pgOwNJKo9pDQF4yKynEPRESk/m36wgwyUSkQ38vqajyGwoyYeow3l2s/tLYOERFPtubYIaaeV4PNZm0tHkRhRkxdLzeH1M5YDxkbrK5GRMTzHEqFPYsBG3T7g9XVeBSFGTEFRUDK+eb6uo+trUVExBOt+5+5bDMcwhKsrcXDKMxIpR5Xm8t1/9P0BiIi9ckwKs9i6nGNtbV4IIUZqdTuXAiKgoJM2DHX6mpERDzH7l/gcCr4hZij/kq9UpiRSj5+lR2BV79vbS0iIp7E8X9q18vAL9jaWjyQwoxU1es6c7ltDhRkWVuLiIgnKM41T8kG6H29tbV4KIUZqSqmkznmjL288viuiIicvvWfQflRiO4ICX2srsYjKczIiXpPMJer3jM7rYmIyOlb/Z657DVBY8s0EIUZOVGXy8A3CHK2w95lVlcjIuK+MjZA+mpzHC9Hn0SpdwozcqKAUOhyqbm+6l1raxERcWeOVpmUMRAcZW0tHkxhRqrn6KS2YSYcPWJpKSIibqm0qLLvYe+J1tbi4RRmpHqJ/SGms9lpbd0nVlcjIuJ+Ns42z2QKT4K2Z1tdjUdTmJHq2WzQ9yZzfcVb6ggsIlJXK94yl31uBC993TYkvbtSs+5/MDsCZ2+BPUutrkZExH0cWAf7V5gdfx3jd0mDUZiRmgWEmbNpQ+UvDBERObWVM8xlp4ugWYy1tTQBCjNyco5DTZs+h8IcS0sREXELJfmVM2Q7/g+VBqUwIyeX0BviekJFaeUphiIiUrN1n0BpAUS2g9ZDra6mSVCYkVM764/mcvmbYK+wthYREVdmGLDsdXO93x814m8jUZiRU+t6OQRGQO4e2Pqd1dWIiLiu1AXmSRN+zaDnNVZX02QozMip+QZWDqK3bLq1tYiIuDJHq0yP8eZo6tIoFGakdvrdDDYv81dH1harqxERcT1H9sDWb831s/5kbS1NjMKM1E54EqRcYK6rdUZE5ETL3wDDDm1GQHSK1dU0KQozUnuOXxprP4ajh62tRUTElZQWVk7Mq1aZRqcwI7WXPAxiukBZIax8x+pqRERcx9qPzB95zVtDh/OtrqbJUZiR2rPZYOCd5vpvr0FFmbX1iIi4Arsdlrxqrg+4A7y8ra2nCVKYkbrpdgUEx0B+Omz83OpqRESst/17OLQT/MOg57VWV9MkKcxI3fj4Vx4PXvKyZtMWEVnyirnsewP4N7O0lKZKYUbqru9N4BMAB9ZC2mKrqxERsU76Gti9CLx84Kxbra6myVKYkboLjoQeV5vri1+ythYRESstmWouu1wKYQnW1tKEuVWYmTJlCjabjXvuucfqUmTgnwEbbJsDmZusrkZEpPEdSoUNM831QXdZW0sT5zZhZvny5UyfPp3u3btbXYoARLWDzheb67++aG0tIiJWWDLVHCSv7SiI62F1NU2aW4SZgoICrr32Wl5//XWaN29udTkAGIbBvE2ZGE25A+zge8zl+k/NYbxFRJqKgixY/b65PuRea2uxkGEY/Lg5E7vd2u9Ctwgzd955JxdeeCHnnHPOKbctKSkhLy+vyqUhvL80jVveXcEf313J4cLSBnkNl5fQ2xy226iAxVOtrkZEpPH8Ng3KiyGhL7QeYnU1lsgvLuPuj9dw8zsreG3hLktrcfkw8/HHH7Nq1SqmTJlSq+2nTJlCWFiY85KYmNgwhdls+Hl7MW9zJhe8tIjfduU0zOu4OscvklXvQuFBa2sREWkMxXmw7A1zfci95oCiTcyG/blc9PIvfLU2HW8vGz5e1r4HLh1m9u7dy1/+8hfef/99AgICavWYBx98kNzcXOdl7969DVLbhAGtmHXHIJKjgjmQW8zVry/lhXnbqLC4qa3RJQ+H+F5QfrRyrAUREU+2/HUoyYWoDpUT8DYRdrvBG4t2cdmri0nLKSIhPJD/3TqQPw5rY2ldNsOFO318/vnnXHrppXh7Vw4NXVFRgc1mw8vLi5KSkir3VScvL4+wsDByc3MJDQ2t9xoLS8p55IuNzFy1D4CzkiN4cXxP4sIC6/21XNaWb+Dja8CvGdyzHoIirK5IRKRhlBTAC93g6CG4dDr0uMrqihpNdn4Jf/10LQu2ZQMwunMLnrmiO+FBfg3yenX5/nbplplRo0axfv161qxZ47z07duXa6+9ljVr1pwyyDSGYH8fnvtDD/5zVQ+C/bxZlnqIMS8uYu6mTKtLazwpF0CLblBaAEv/a3U1IiINZ8WbZpCJaANdL7e6mkazYFs2Y15cxIJt2fj7ePGvS7ry2oQ+DRZk6srH6gJOJiQkhK5du1a5LTg4mMjIyBNut9qlvVrSM7E5d3+0mvX7c/njuyu4YVBrHhjTkQBf60NXg7LZYPjf4H8TzE5xA++AQNc460xEpN6UFsGvxwYKHfpX8Hbpr9B6UVJewbNztvLGL6kApLQI4aWre5ESG2JxZVW5dMuMu0mOCmbm7YO4ZUgyAG8v3s0lr/zK1ox8iytrBB0vgpjOUJJnzqgtIuJpVs6AooMQ3gq6/8HqahrcruwCLv/vYmeQuX5gK77482CXCzLg4n1m6kND95mpyc9bsvjrp2vJKSzFz8eLB87vyA2DWuNlcY/vBrVhFnx2ozlz7D3rIDDc6opEROpHaRG81BMKMmHsS9BnotUVNRjDMPh05T4e+3IjRaUVNA/y5ZkrenBu5xaNWofH9JlxZyM7xjDnnmGMTImmtNzOP7/exMQZy8jMK7a6tIbTeRxEdzJ7+S9+2epqRETqz7LpZpAJT6qcm84DHSos5fb3V/G3z9ZRVFrBwDaRfPeXYY0eZOpKYaYBRYf489YN/fjXuC74+3ixaPtBznthIXM2HLC6tIbh5Q1nP2SuL/2vxp0REc9QnAu/vmCuj3gQfFyj02t9+3lrlvkdtTEDHy8b95+Xwvu39Cc2rHZDo1hJYaaB2Ww2JgxszTd3D6FrQihHisq47f1V/O2ztRSWlFtdXv3reBHE9YSyQvjlP1ZXIyJy5pa8CkcPm+PKdPe8U7GLSsv5x+fruXHGcrLzS2gX04zP7xzMnSPb4e0mXSMUZhpJu5gQZt0+mNuGt8Vmg/+t2McFLy1iZdphq0urXzYbnP2wub7sdchLt7YeEZEzUXSockDQkZPNFmgPsmbvES566RfeX2rOr3fj4NZ8fdcQuiaEWVxZ3SjMNCI/Hy8eGNORj/44gPiwANJyirhy2mKe+m4LJeUVVpdXf9qNgqSBUFECC56xuhoRkdP3y/NQmm+OpdVpnNXV1JvyCjsvztvO5f9dzK6DhcSGBvD+zf15dGwXtxxORGHGAgPaRPLdPcO4rFcCdgOmLdjJxS//yob9uVaXVj9sNhj1iLm+6l3I3mZtPSIip+PIHvhturk+6mHw8oyvzB1ZBVwxbQn/OTYFz0Xd45hzz1CGtI+yurTT5hmfjBsKC/Tl+at6Mu26PkQG+7E1M59LXvmVF+dtp6zCbnV5Z67VIOgwxpxR+8fHra5GRKTufnrCbGFuPRTaj7a6mjNWYTd4feEuLnhpEWv2HiEkwIcXx/dk6jW9XWYk39OlMGOx87vG8sO9wxjTNZZyu8F/5m3jslcXsy3TAwbaO+cxsHnBlq9hz1KrqxERqb0D62DdJ+b6uY+7/czYu7IL+MNrS3ji282UltsZ1iGa7+8ZxrieCVaXVi8UZlxAZDN/Xr22Ny+O70lYoC/r9+dy0Uu/8NqCne49C3dMR+g1wVz/4WHw7PEZRcSTzHsUMMz5lxL6WF3NabPbDd78JZUxL5onnDTz9+Gpy7rxzo39iA/3nAmRFWZchM1mY1zPBH6499hAexV2pny3hSumLWZHlhu30ox4EHyDYN8y2PS51dWIiJza9nmw8yfw8q08O9MN7T5YyPjpS/nX15soKbczpF0U3987jPFnJWFz85am31OYcTEtQgN464Z+PH15N5r5+7B6zxEuePEXpv7kpn1pQuNg0N3m+g+PQNlRa+sRETmZijL4/kFzvf+tEJFsbT2nwW43ePvXVM5/cSHLdh8i2M+bJy7tyns3n0WCB7XGHE9hxgXZbDau6pdUpZXm3z9sY9xUNz3jafBfIDQBcvfAkqlWVyMiUrPlb8LBbRAUCcPut7qaOtuRlc+Vry3hsa82UVxmZ1DbSObcM4xr+7fyuNaY4ynMuLD48EDeuqEfL1zVk/AgXzYdyGPcK7/yzJwtFJe50bg0fkFw7j/N9UXPayA9EXFNhTkw/0lz/eyH3Wqy3NJyOy/9uJ0LXvyFlWmHCfbz5l/juvD+zf1JjAiyurwGpzDj4mw2G5f0SmDuvcO5sFscFXaDV+fv5IKXFrFi9yGry6u9rpdDYn8oK4J5j1ldjYjIieY/ac7D1KIb9L7e6mpqbfWew4x9+Reen7uN0go7Z3eMYe6k4UwY2BovN5mO4EzZDMOzTzGpyxTi7mDOhgwe/mID2fkl2GwwYUAr/npeCqEBvlaXdmr7V8HrZwMG3PidORaNiIgrSF8Dr48Eww4Tv4bkoVZXdEpFpeX8+/ttzFicimFARLAfj47tzMU94j3ikFJdvr/VMuNmzu8ay7x7h3Nln5YYBry7JI1zn1/Ad+sP4PK5NKF35a+db+4zO9qJiFjNbjf/TzLsZiuyGwSZhduyGf2fhbz1qxlkLuuVwLxJwxnXM8EjgkxdqWXGjf264yAPzV7P7pwiAM7pFMPj47q6dm/1okPwch84eghGPwGD/mx1RSLS1K18G776C/iFwJ+Xm2dhuqis/GL+7+vNfLnW7HuYEB7IE5d2ZURKjMWV1T+1zDQRg9tFMeeeYdx9djt8vW3M25zFuc8v4I1Fuyh31dO4gyIqOwPPnwK5+62tR0SatsKDMPdRc33kZJcNMhV2g/eWpjHquQV8uTYdL5s5w/UP9w7zyCBTV2qZ8RDbM/OZPHs9y3cfBqBLfChTLutG95bh1hZWHbsdZpwPe3+DjhfB+A+srkhEmqrZt8PaD6FFV/jTAvD2sbqiE2zYn8tDn29g7d4jAHRvGcYTl3SjW8swawtrYHX5/laY8SB2u8GnK/fy5LdbyD1ahtexDsKTRqcQFuhiHYQzNsD04WAvhz+8B50vtroiEWlqdv4E710K2ODmHyDxLKsrqiK/uIzn527jncW7sRsQ4u/D/eencG3/Vng3gbOUdJipifLyMgfb+/G+4VzaKwG7Ae8sSePsf8/n0xV7sbvSPE+xXc3B9AC+vR+OHrG0HBFpYkoLzX4yAGf90aWCjGEYfLv+AOc8v4AZv5pBZmyPeH68bzjXD2zdJIJMXallxoMt3nGQR77cyI6sAgB6J4Xzz3Fd6ZrgIk2TZcUwbTDk7IDeE+Hil6yuSESaiu8fMkckD20Jdy4F/xCrKwLMEXwf+3ITv+w4CECryCD+Oa4rwztEW1xZ49NhpuM05TAD5qiQby9O5YV52ykqrcDLBtcNaMV956YQFuQCh552/wpvX2CuX/8ltBlubT0i4vn2rYA3zzVPxb72M2h/rtUVkV9cxovztvP24t2U2w38vL24bXgb7hjZjgBfb6vLs4TCzHGaephxOJB7lCe+2czX6w4AEBnsx9/HdOSK3i2tHyHy60mw4k0IS4TbF0NA0/2cRKSBlRbBa0PNFuFuf4DLX7e0HLvdYPbq/Uz5bgsHC0oAc5iNhy/qTKvIYEtrs5rCzHEUZqr6/aGnnonhPDK2M72TmltXVEkB/HcQHEmDXhNgnCajFJEGMudBWPoqhMTBHUsg0Lr/+zbsz+WRLzawas8RAJKjgnlkbGdG6lRrQGGmCoWZEzkOPb04bzuFpeaElZf0jOfvYzoSF2bRgHu7f4W3LwQMuOZ/0OE8a+oQEc+Vugjeuchct/Dw0sGCEp77YRsfL9+DYUCQnzd3nd2em4a0xt+naR5Sqo7CzHEUZmqWlVfMs99v5bNV+zAMCPD14rbhbbl1WFsC/Sz4B+XokNeshXm4KTiq8WsQEc9UnAvThsCRPZadcFBSXsGMX3fzyk87yC8pB2Bcz3geHNOJ2LCARq/H1SnMHEdh5tTW78vln19vdA64Fx8WwN/HdGz8ycrKjsJrw+HgVugwBq7+CJrgHCMiUs8MA2beAhs+g/Ak88dSI569ZJ5qncFTczaz99BRALomhPLwhZ3p3yay0epwNwozx1GYqR3DMPhm/QGmfLuF/UfMf2y9k8J5+KLO9GrM/jQZ682ZtStK4YJ/m+M/iIiciTUfwee3gc0bbprTqGPKrN17hH99vYkVaeaPxRah/tx/Xkcu65Vg/ckXLk5h5jgKM3VTXFbB6wt38er8nRwtM/vTXNgtjvvPS6F1VCP1rF86Deb8Hbz94U8/Q4sujfO6IuJ5cnbCa8OgtABG/gOG398oL5t+5CjPfr+V2avN+ecCfL24dVhbbh3ehiA/15sywRUpzBxHYeb0ZOYV8+/j+tP4eNm4tn8Sd49qT2Qz/4Z9ccOAD/8A23+AqBT440/g36xhX1NEPE9ZsTmeTMY6aDUYJn4FXg3bHzD3aBnTFuzkrV9SKSk3J/y9vHdL7j8vRf1i6shjwsyUKVOYNWsWW7ZsITAwkEGDBvH000+TkpJS6+eozZthGAbl5eVUVFTUV+luxdvbGx8fn2r7x2zJyOOp77Ywf2s2AM38fbh9RFtuGpzcsJ2ECw+anfXyD0DXK+DyN9R/RkTq5qt7YOUMCIyA2xZBWMsGe6nisgreXbKbV37eSe7RMgDOah3Bwxd19vgJIRuKx4SZ888/n/Hjx9OvXz/Ky8t56KGHWL9+PZs2bSI4uHaHPE71ZpSWlnLgwAGKiorqu3y3EhQURFxcHH5+ftXe/+uOg0z5bjMb9ucB5nHfSed24Io+iQ03T0jaEvN0baMCLnwO+t3SMK8jIp5n7Scw+0+ADa77DNqd0yAvU2E3mLVqH/+Zu4303GIAOrRoxt/O68ioTjGNexKFh/GYMPN72dnZxMTEsGDBAoYNG1arx5zszbDb7Wzfvh1vb2+io6Px8/Nrcn94hmFQWlpKdnY2FRUVtG/fHi+v6ucftdsNvlqXzrPfb2XfYbOTcNvoYCadm8KYrrEN05nt15dg7sPg7Qc3zoGWfer/NUTEs2RugjdGQVkRDP87jJxc7y9hGAY/bs7ime+3sC3THIQ0LiyASed24LLeLTUZZD2oS5hxq15Iubm5AERERNS4TUlJCSUlJc7reXl5NW5bWlqK3W4nMTGRoKCg+ivUzQQGBuLr60taWhqlpaUEBFR/XNfLy8a4ngmc3zWW95akMfXnHezMLuTOD1fRJT6Uv45OYURKdP0GwkF3wd7fYMvX8Mm18Kf5EBJbf88vIp6l6BB8fLUZZNqMMMNMPVu6K4fnftjqHM4iLNCXO0e25fqBrZvsPEpWc5uWGcMwGDduHIcPH2bRokU1bvfYY4/x+OOPn3B7dcmuuLiY1NRUkpOTa/wCbypO573IKy7jzUWpvLFol3Mk4T6tmvPX0SkMbFuPYycU58Eb55jjz7Q8C274GnwauBOyiLifinL44HLYNR/CW5k/foJq/vFbVyvTDvP83K38uiMHAH8fL24aksxtw9sSFugCE/d6GI88zHTnnXfyzTff8Msvv9CyZc2duKprmUlMTFSYOYUzeS8OFZYybcFO3lm829l7f2j7KP46OoUeieH1U+DBHeb4MyW55vxNF7+sDsEiUpVjFHHfILh5LsR2rZenXbfvCM/P3eY8EcLX28ZV/RL588j2OkOpAXncYaa77rqLL7/8koULF540yAD4+/vj769f7Y0pItiPyRd04uYhyUz9aQcfL9/Dou0HWbT9IKM6xnD3qPZnHmqi2sEVb8GHV8Lq9yCqAwy+u17qFxEPsOItM8gAXDqtXoLMpvQ8np+7jXmbMwHw9rJxRe+W/PnsdiRGNN2uCa7IpcOMYRjcddddzJ49m/nz55OcnGx1SXISLUID+NclXfnTsDa8MG87s1fv48ctWfy4JYsRKdHcPar9mc3O3f4cGP0EfP+g2Sm4eSvoPK7+dkBE3NP2efDNX831EZPP+P+FzQfyePmn7Xy7PgMALxtc0jOBu0e1b7zBQ6VOXDrM3HnnnXz44Yd88cUXhISEkJFh/mGFhYURGGjR7M5uYu/evUyYMIGsrCx8fHx4+OGHufLKKxvltRMjgnjuDz24c2Rbpv68gy/WpDN/azbzt2YztH0UfxnVnr6tT/M49oDb4XAqLJsOs/4EoQnQsm/97oCIuI+MDfDpDeYQDj2ugeF/O+2nWrv3CC//tMPZEmOzmSOg33NOB9rFaOBOV+bSfWZqOitmxowZ3HDDDbV6jpMdc/PkPjMHDhwgMzOTnj17kpWVRe/evdm6dWuN4/M05Hux+2Ahr87fwcxV+6mwm39ug9pG8pdR7U9vkrWKcvj4Gtj+vTkY1k3fQ3SHeq1ZRNzA4d3w5nlQkAGth8J1s8Cn+rGyTmb57kO8/NMOFm4z+8Q4Qsyfz25Hx1iNHG8Vj+wAfLqaapj5ve7du/PNN9+QmJhY7f2N8V7sPVTEq/N38OmKfZQfCzX9Wjfn9hFtGZlSx8GlSgrgnbGQvgpCW8LN3zfo6J4i4mIKsuCt8+DQLojpDDd+C4G1P4xtGAaLd+bw0o/b+S31EGD2ibmkZwJ3jGxL22i1xFjN4zoAy5lZsWKFczwdKyVGBDHlsu7cObId/52/k/+t2Mvy3YdZ/vYKOsaGcNvwtlzUPQ4f7+oH7avCvxlc+ym8dT7kbIf3LoMbv4PgejwlXERcU3EuvH+5GWTCkswWmVoGmQq7wdxNmby2cCer9xwBzLOTruybyO3D26pjr5tSy4yHt8zk5OQwdOhQ3njjDQYNGlTjdla8Fxm5xbz1ayofLE1zjlOTEB7In4a14Q99E2s399ORPWYzc346xHaD67+s13ElRMTFlOSbP172LYOgKPMwc1S7Uz6suKyCWav28/qiXaQeLATMcWKuPiuJW4e3IS5M/TBdTV1aZmrxE1hc0UcffURAQAD79+933nbLLbfQvXt350jJJSUlXHrppTz44IMnDTJWiQ0LYPIFnVj8wCjuPy+FyGA/9h85yqNfbmTw0z/x0o/bOVJUevInCU+C6z+H4GjIWA/vX2b+ahMRz1NaCB/8wQwyAeEwYfYpg8yRolJe/nE7Q57+icmz15N6sJDQAB/uHNmWX/5+No9d3EVBxgOoZcZNW2YMw6Bnz54MHTqUqVOn8vjjj/PGG2+wdOlSEhISMAyDa665hpSUFB577LFTPp8rvBfFZRV8unIf0xfuZO8hc+6nAF8vLu/dkhsHJ5/8bILMTeaklEcPQct+cN1MCNBMtSIeo7QQPhoPqQvBPxSu/wISete4+d5DRbz5Syr/W7GXouNafm8eksxV/RIJ9lcvC1enDsDHqWuYMQyDo2UVjV5noK93nec0+vrrr7niiit45JFH+Pe//82iRYvo0qULAL/88gvDhg2je/fuzu3fe+89unXrVu1zuUKYcSivsPPthgxeW7CTjemVc2uNSInm5iHJDGkXVf17dWCd2Sm4+AjE9TR/temQk4j7K86DD66EvUvBrxlM+BwS+52wmWEYLN99mBm/pvL9xgyOnWdAp7hQbhvehgu6xeFbmz554hIUZo5T1zBTVFpO50e+b/Q6N/3zPIL86v5LoXfv3mzcuJEffviB4cOHn/bru1KYcTAMg99SD/HmL6nM25yJ4y81pUUINw1pzbieCSdO6paxHt4dB0U55hkO138BzWIav3gRqR9Fh8zOvumrzNbW62adMLZUcVkFX61N5+3Fu6v8ABrSLopbh7ep+QeQuDSdzdREfP/992zZsoWKigpatGhhdTn1zmazMaBNJAPaRLL7YCFvL97N/1bsZWtmPn+fuZ5n5mzl6rOSuLp/Egnhx455x3aDG741A03WJnhzNEyYBRFtrN0ZEam73H1mkMneYo4pdf3nENfDeXdmXjHvL03jw9/2kFNo9q/z9/Hist4J3DAomZTYEIsKl8amlhk3Pcy0atUqRowYwSuvvMLHH39MUFAQn3766Wm/viu2zFQn92gZnyzfwzuL09h/xOxX42WDUZ1aMGFAK4a0i8LLywY5O+G9S+FImtk5+NrPIL6ntcWLSO1lbTE79Ofth5A487BxTCfnoaT3l6bx7foDzjGr4sMCmDCwNeP7JdI8uO4D54nr0WGm43hiB+Ddu3czcOBA7rrrLiZPnszKlSvp168fy5cvp0+fPqf1nO72XpRX2Jm7KZP3lqaxeGeO8/bkqGCu7Z/ElX0SCas4BB9cbh568msGV74N7c+1rmgRqZ3URfDJdWb/t6gOcN0scv1jmb1qHx/8toftWQXOTfu1bs6Ng5MZ3blF7caoErehMHMcTwszhw4dYvDgwQwbNozXXnvNefu4ceMoKSlhzpw5p/W87vheOOzIyuf9pXuYuXIf+SXlgHkW1MU94rmuVwTdfrkDW+pCsHnBeVOg/63meOUi4npWvgPfTAJ7OUbLs9g4fDrvrs3jy7XpFJfZAbMl++Ie8UwY2IquCTpr0VMpzBzH08JMQ/GE96KwpJwv1qTz7pLdbMnId97eJSaA55u9S0r65+YNfW6EMc+c1hwuItJAKsph3qOwZCoAu+PGMKnkFlallzg36dCiGdcNaMUlvRIIDfC1qlJpJOoALE1SsL8P1/RP4uqzElm15zDvL93Dt+sPsDGrmPOyruQ232D+5v0hXitnYGRuxPaHdyA03uqyRaQgG+OzG7HtXgTAy/YreC71UqAEPx8vLuwWx7X9k+jTqrnOSpJqKcyIx7HZbPRpFUGfVhE8dnEXvlybzifL9zBt/4VsrYjnBd9XCNu3jMKXB1N40WvE9BhtdckiTVbmxkUEfXETIaVZFBgB3F92K9/Z+9M2Opir+iVyRZ9EItShV05BYUY8WligLxMGtGLCgFZsTM/lf8tbcfXqRJ6z/5tOZXsInPUHvvjhco4OfpAxPVsRFqSma5GGVlhSzg8b0yme/x+uzH0bH5udnfY47rXdT5e+ZzGrb0t6JYarFUZqTWFGmowu8WE8Pi6M4gs6MW/tYA78/A/OLvyOcYWfsXHOcsZ/czetOvbikl4JjOwYjb9PLSa6FJFaKS23s2h7Np+vSWfdpo38i2kM814PNlgcOIJDI5/hk57tajfBrMjvKMxIkxPg681FfdtB3485vHIWAXPupUtZGrNtD/DElmu5beO5hAX6cWH3OC7uEU+/1hF4e+kXokhd2e0GK9IO8/ma/Xy7/gBHikoZ7/0zX/l8QKjtKGVe/uSfPYVBg2/SGYZyRhRmpElr3ucy6DAIPr+DgJ0/8i/ft7nAbw1/K57Ih7+V8eFve4gO8eeCrrFc2D2evq2am4PyiUi1DMNg3b5cvt1wgK/WpJOeWwxAS1sWrwW+SX9jvbldy374jnuViOgOVpYrHkJhRiQk1hwheNl0mPsIAyvWMD9oM/MirmNy9tlk55fwzpI03lmSRkyIPxd0i+PC7nH0SVKwEQGzBWb13sN8uz6DORsynKNzA4T6e/HPuCWMzZ6Od8VR8AmEUQ9j638beOmQktQPjTPj5mOr1Be9F8cc3A7f3AepCwAwItqytvs/eC+rLT9syiC/uNy5aWxoAKO7tODczi3onxyJn49GH5Wmo8JusCz1EHM2HGDOxgwy8yrHgwny82ZkSgzXxe2j/7Z/45Wx1ryj1RC4+CWIbGtR1eJONGjecRRmakfvxXEMAzbMhO8nQ0GmeVvnSygZ+Qi/5jTj63UHmLsx0znaMECIvw/DU6I5t3MLRnaM0YBe4pEKSsr5ZXs28zZn8fOWLOfkjmD+GxjVKYYx3eIYEZWP//zHYfNX5p1+IXDOo9D3ZvBS6JfaUZg5jsJM7ei9qEZxLvw8BZa9BoYdvHyg9/Uw7H5Kglrwy/aDzN2UybzNWRwsqPxV6uNlzvZ9bucWnN0xhsSIIAt3QuTM7DtcxI+bs5i3OZPfdh2itMLuvC88yJdzO7VgTLdYBreLwr8sHxY+C7+9BvYycwqRPjfAiMnQLNq6nRC3pDBzHIWZ2tF7cRIH1sG8x2Dnj+Z1nwDodwsMmQTBkcf6Cxxh7qZM5m7KYGd2YZWHt4kOZkSHGIanRNM/OYIAX/UTENdVWm5n1Z7DLNyWzU9bsqpMDQLQOjKIUZ1aMKpTDP1aR+Dr7QWFOfDbf+G36VCSa27Y9mwY/QS06GzBXognUJg5TlMPM0VFRXTq1Ikrr7ySf//73zVu1xTeizO2+1f46V+wZ4l53a8Z9L3JnLgyrKVzs13ZBczdlMmPm7NYuecwFfbKf2L+Pl4MaBPJiJRohneIJjkqWAODiaUMw2DXwUIWbctm0faDLNmVQ1FphfN+by8bfVo155xOMYzq1II2x//N5mfA4pdhxQwoOxbiozvB6P+D9udYsDfiSRRmjtPUw8xDDz3E9u3bSUpKUpipD4YBO36En/4JB451arR5Q5dLYMCd0LJPlc1zj5axeMdBFmzLZv7WbDLyiqvcHx8WwMC2UQxsG8nAtpEkhAc20o5IU5adX8JvqTn8sv0gi7YfrHL2EUBUMz+GtjcD94iUaMKDfjedQNZm8+y/1R9AxbFDrLHdYdhfoeNY9YuReqGJJgWA7du3s2XLFsaOHcuGDRusLscz2GzmL852o2DbHFjyCuxeZHYY3jATEgdA/z9ByoXgG0BYoC9jusUxplschmGwLbOABduyWLAtm2Wph0jPLWbmqn3MXLUPgFaRQQxsE+kMNzEhCpZy5jLzilm6K4ffUg/x266cEw6F+vl4cVbrCIa2j2Jo+2g6xoacOOxAWTFs/tJshdmzuPL2xAFmiGl3jga+E8sozHiwv/71rzz77LMsXrz41BtL3dhskDLGvBxYB0tfhfWfwd6l5iUgDLpeDj2ugZZ9wWbDZrOREhtCSmwIfxrWlqLSclamHWbxzhyW7Mxh3b4jpOUUkZZTxMfL9wJm/4Q+rSLo27o5fVs1p210M41tIydlGAZpOUWs2nOYZamHWLorh905RVW2sdkgpUUIg9tFMaxDNGe1jqh+GgHDMFth1n5otsIcPXTsCbyh4wXQ/zZoNVghRiynMOOhvvjiCzp06ECHDh0UZhpaXHe4dBqc8xgsfxPWfAh5+2DFW+Ylsh30GA+dxsFxo50G+fkwtH00Q9ubZ3nkF5exfPchFu/IYcmuHDYdyGN3ThG7c4qcLTdhgb70Tgqnb+sI+rRqTreEMIL99c+4KSssKWftviOs3nOEVWmHWb33CIeOO2UazKzRJT6U/smR9E+O4KzkiBMPHR0vextsnAUbZsHBrZW3hyaYZyf1mgChcQ2zQyKnQX1m3LSfyEcffcSNN97Izp07SUhIAOCWW25h2bJlLFq0iKeeeor3338fb29vCgoKKCsr47777uORRx6p9vnc+b1wOXY77F4Iaz4ym+XLjvtVHNkOUi6AjhdCy34nHQE1t6iMVXsOsyLtECvTDrNm7xGKy+xVtvGyQbuYZnRLCKdbQijdWobTOS5Uk/V5qOKyCrZm5LMxPY/1+3NZs/cIWzPysP/uf3E/by86x4dyVnIE/ZMj6Ns6grDAk4x9ZK+A9DWwY575N5t53GFpbz/zEFLv66HdueCt8CyNQx2Aj+OpYcYwDHr27MnQoUOZOnUqjz/+OG+88QZLly51hhuHt99+mw0bNqgDsBVK8mHTl+av3NSFUHHcL+bgaGgzAloPheSh0Dz5pM31ZRV2NqXnsTLtsPPy+w7FYJ590j6mGd1bhtEpLpSU2BA6xoYSEXySX+LicgpKytl8II8N+3PZsD+Pjem5bM8qqHJ2nENCeCA9k8LpndScXknhdIkPPfWs7/mZsPMnM8Ds/KnyEBKYYyq1GWkeKu14gXnYVKSRqQPwmTCMqr+kG4tvUJ2OO9tsNp544gmuuOIK4uPjefHFF1m0aNEJQUYs5h8Cva41L8V55hfH1m9h2w9QmA3rPzUvAKEtzVDTahDE94bojlV+Bft6e9EjMZweieHcNCQZgKy8Ytbvz2Xdvlzn8mBBCVsy8k8YHyQ6xJ+OsSF0jA0hJTaUjrEhtIkOJshP/w1YqbCknB1ZBWzLzGe7Y5lZcMIZRg4RwX50iQ+lS3wYPRPD6JXUnBahp/gBYrdD9hbY+1vl5dCuqtv4h0Kb4dB+NHS8CIIi6mkPRRqeWmZ+3xpRWghPxjd+oZPTwS+4zg/r3bs3Gzdu5IcffmD48OGn/fJqmWlkFWXmeDWpCyF1EexfaY6YejyfQLM/TnxviO8JMZ0gsj341TyisGEYZOaVsG7fEdbvz2XzgXy2Zuax91D1X4wAcWEBtIkOJjkqmOSoZrSJDqZNVDAJ4YH4eOsU2/pQVmFn/+Gj7M4pJC2niN05hew+WMj2rAL2HT75Z+MILl0TwugSH0pcWMDJxyYqLzGDS8YG83BRxnrIWGeOaF2FDeJ6mIeQ2p1jdlT31jQc4jo8rmXm1Vdf5dlnn+XAgQN06dKFF154gaFDh1pdluW+//57tmzZQkVFBS1atLC6HKkLb19IHmZewAzRe5aap3nvW2H2XyjNr/wV7WSD5q3MVpuoDhDRxrwe3grCErH5+BEbFkBsWCyju8Q6H1VQUs62zHy2ZuSz5UAeWzLy2ZqZz5GiMg7kFnMgt5hfd+RUKdHX20ZCeCAtmwcdWwaS0Ny83rJ5IC1CA/DWmVWAGVYy88z3Mf3IUdKPmMu0Q0Wk5RSy7/DRag8POUQ186d9TDM6tGhG+xYhdGgRQvuYZjSv6dBgRTnkHzBbVw7thJyd5nrOTvO6vfzEx/gGm+MgJfY3T6du2RcCw+vnDRCxmMu3zHzyySdMmDCBV199lcGDB/Paa6/xxhtvsGnTJpKSkk75+Dq3zLjJYaZVq1YxYsQIXnnlFT7++GOCgoL49NNPT/vl1TLjYux280tp/ypIX2We/p29pWq/ht+zeUFIPIQlQLMYCI6BZi3MOXGatTh2PcY8fODXDGw2DheWsutgIbuyC0g9WMiu7EJSDxaSmlNIabm95tfCnIMqOsSfmBB/okMCiAl1rPsTExJATIg/EcF+hAf50szfxy1HOi4sKSenoJTsghIOFpSQU1DKwWPrBwtKzCB4pJis/OITOuH+XoCvF60igmkdFUTryGCSIoNoF22Gl4hgP/MzL8mFokNQeBCKco5dDprXc/dB3n7I3Q8FGeZ8YTW+WDjEdoMWXc1lbFeI6aLOu+JWPKoDcP/+/enduzf//e9/nbd16tSJSy65hClTppzy8Z7YAXj37t0MHDiQu+66i8mTJ7Ny5Ur69evH8uXL6dOnz6mfoBru+l40OYUHzVCTvQWyt8Lh3XA4DY7sgfKaD1ecwOZl9ufxD4OAULO/hGPpF4zh409BuTe5ZV4cLvXmUImNnGIb2Uchs8ggoxCOGj5U4EUFXtjxwm54UYEN+/G3HVu3eXkR5O9HcKAfIf6+hAT6ERrgQ6CfD4G+Xvj7ehPo60WAr3k9wM+HAF9vfL298PGy4e1lq7r09sL72CizdruB3TCwG2BwbN0OdsOgtAJKyysoKa+guMyg5Nh6SblBSVkFRaXlFBaXUlhSRlFJGYXFpRSVlFNUYt5WXl6BDQMvDOfSCzu2Y9d9bRX4UY4fZQR4VRAT5EVUIEQF2ogIMIgMsBERYCPC304wxdhKC8xWOMeyJP/YMs8MMUbFKT6443j5mC1ykW0hoq25jGxrttiFJmjsF3F7HnOYqbS0lJUrV/LAAw9UuX306NE1jp1SUlJCSUnlDMZ5eXkNWmNjO3ToEGPGjOHiiy9m8uTJAPTp04exY8fy0EMPMWfOHIsrlAYVHAXBQ6D1kKq3G4bZofhwGuSnQ0HWsUumeXtBJhQcW1aUmL/qi3PNy++7UgA2IOTYpeWJd8PpdK2wA4XHLu7A+9ilLkqPXap5T2vNL8RsPQuKND/voEjzEppgtrqFtjSXwTGaNkDkGJcOMwcPHqy2P0iLFi3IyMio9jFTpkzh8ccfb4zyLBEREcHmzZtPuP2LL76woBpxGTabeQipWczJtzMMKDtqtgQU5x1b5prLknzztrIiKC82O5KWF/9uvfS460fNQyNGhRmO7BXHrdvNpVGBYT/uYtgx7HYMgGMtKZXrlTUax274fbOx47rt93dW0whh+/3SVvU+G2DYvMw7bDZsNi+weWGzmS1JjqXXsds5bltsXuYzePuBj5+5rHLxBR//ynVvf/BvZnby9wsxl/7NzMN9fsFmK1lQJARGgK9aRkXqyqXDjMPvj7UbhlHj8fcHH3yQSZMmOa/n5eWRmJjYoPWJuA2bzTwbyi8IQmJPvX19vCTVZg0RkXrj0mEmKioKb2/vE1phsrKyajx7x9/fH39//8YoT0RERFyASx9w9fPzo0+fPsydO7fK7XPnzmXQoEEWVSUiIiKuxKVbZgAmTZrEhAkT6Nu3LwMHDmT69Ons2bOH2267zerSRERExAW4fJi56qqryMnJ4Z///CcHDhyga9eufPvtt7Rq1crq0kRERMQFuHyYAbjjjju44447rC5DREREXJBL95lpLC4+bmCj0HsgIiLuqkmHGV9fc+SvoiILpi9wMY73wPGeiIiIuAu3OMzUULy9vQkPDycrKwuAoKAgt5w/5kwYhkFRURFZWVmEh4fj7V3XIU9FRESs1aTDDEBsrDlwmCPQNFXh4eHO90JERMSdNPkwY7PZiIuLIyYmhrKyMqvLsYSvr69aZERExG01+TDj4O3trS90ERERN9SkOwCLiIiI+1OYEREREbemMCMiIiJuzeP7zDgGg8vLy7O4EhEREaktx/d2bQZ19fgwk5+fD0BiYqLFlYiIiEhd5efnExYWdtJtbIaHj2Nvt9tJT08nJCSk3gfEy8vLIzExkb179xIaGlqvz+0KtH/uz9P3Ufvn/jx9H7V/p88wDPLz84mPj8fL6+S9Yjy+ZcbLy4uWLVs26GuEhoZ65B+pg/bP/Xn6Pmr/3J+n76P27/ScqkXGQR2ARURExK0pzIiIiIhbU5g5A/7+/jz66KP4+/tbXUqD0P65P0/fR+2f+/P0fdT+NQ6P7wAsIiIink0tMyIiIuLWFGZERETErSnMiIiIiFtTmBERERG3pjBTS7t37+bmm28mOTmZwMBA2rZty6OPPkppaelJH2cYBo899hjx8fEEBgYyYsQINm7c2EhV190TTzzBoEGDCAoKIjw8vFaPueGGG7DZbFUuAwYMaNhCT9Pp7J87fYaHDx9mwoQJhIWFERYWxoQJEzhy5MhJH+Pqn9+rr75KcnIyAQEB9OnTh0WLFp10+wULFtCnTx8CAgJo06YN06ZNa6RKT09d9m/+/PknfFY2m40tW7Y0YsW1t3DhQsaOHUt8fDw2m43PP//8lI9xt8+vrvvoTp/hlClT6NevHyEhIcTExHDJJZewdevWUz7Ois9QYaaWtmzZgt1u57XXXmPjxo385z//Ydq0aUyePPmkj3vmmWd4/vnnmTp1KsuXLyc2NpZzzz3XOWeUqyktLeXKK6/k9ttvr9Pjzj//fA4cOOC8fPvttw1U4Zk5nf1zp8/wmmuuYc2aNcyZM4c5c+awZs0aJkyYcMrHuern98knn3DPPffw0EMPsXr1aoYOHcqYMWPYs2dPtdunpqZywQUXMHToUFavXs3kyZO5++67mTlzZiNXXjt13T+HrVu3Vvm82rdv30gV101hYSE9evRg6tSptdre3T4/qPs+OrjDZ7hgwQLuvPNOli5dyty5cykvL2f06NEUFhbW+BjLPkNDTtszzzxjJCcn13i/3W43YmNjjaeeesp5W3FxsREWFmZMmzatMUo8bTNmzDDCwsJqte3EiRONcePGNWg99a22++dOn+GmTZsMwFi6dKnztiVLlhiAsWXLlhof58qf31lnnWXcdtttVW7r2LGj8cADD1S7/d/+9jejY8eOVW679dZbjQEDBjRYjWeirvv3888/G4Bx+PDhRqiufgHG7NmzT7qNu31+v1ebfXTnzzArK8sAjAULFtS4jVWfoVpmzkBubi4RERE13p+amkpGRgajR4923ubv78/w4cNZvHhxY5TYaObPn09MTAwdOnTgj3/8I1lZWVaXVC/c6TNcsmQJYWFh9O/f33nbgAEDCAsLO2Wtrvj5lZaWsnLlyirvPcDo0aNr3J8lS5acsP15553HihUrKCsra7BaT8fp7J9Dr169iIuLY9SoUfz8888NWWajcqfP70y542eYm5sLcNLvPas+Q4WZ07Rz505efvllbrvtthq3ycjIAKBFixZVbm/RooXzPk8wZswYPvjgA3766Seee+45li9fztlnn01JSYnVpZ0xd/oMMzIyiImJOeH2mJiYk9bqqp/fwYMHqaioqNN7n5GRUe325eXlHDx4sMFqPR2ns39xcXFMnz6dmTNnMmvWLFJSUhg1ahQLFy5sjJIbnDt9fqfLXT9DwzCYNGkSQ4YMoWvXrjVuZ9Vn2OTDzGOPPVZtZ6zjLytWrKjymPT0dM4//3yuvPJKbrnlllO+hs1mq3LdMIwTbmtIp7OPdXHVVVdx4YUX0rVrV8aOHct3333Htm3b+Oabb+pxL2rW0PsH1n6Gddm/6mo6Va1Wf36nUtf3vrrtq7vdVdRl/1JSUvjjH/9I7969GThwIK+++ioXXngh//73vxuj1Ebhbp9fXbnrZ/jnP/+ZdevW8dFHH51yWys+Q58Ge2Y38ec//5nx48efdJvWrVs719PT0xk5ciQDBw5k+vTpJ31cbGwsYCbVuLg45+1ZWVknJNeGVNd9PFNxcXG0atWK7du319tznkxD7p8rfIa13b9169aRmZl5wn3Z2dl1qrWxP7+aREVF4e3tfUIrxcne+9jY2Gq39/HxITIyssFqPR2ns3/VGTBgAO+//359l2cJd/r86pOrf4Z33XUXX375JQsXLqRly5Yn3daqz7DJh5moqCiioqJqte3+/fsZOXIkffr0YcaMGXh5nbxhKzk5mdjYWObOnUuvXr0A8zj5ggULePrpp8+49tqqyz7Wh5ycHPbu3Vvly78hNeT+ucJnWNv9GzhwILm5uSxbtoyzzjoLgN9++43c3FwGDRpU69dr7M+vJn5+fvTp04e5c+dy6aWXOm+fO3cu48aNq/YxAwcO5Kuvvqpy2w8//EDfvn3x9fVt0Hrr6nT2rzqrV6+2/LOqL+70+dUnV/0MDcPgrrvuYvbs2cyfP5/k5ORTPsayz7BBuxd7kP379xvt2rUzzj77bGPfvn3GgQMHnJfjpaSkGLNmzXJef+qpp4ywsDBj1qxZxvr1642rr77aiIuLM/Ly8hp7F2olLS3NWL16tfH4448bzZo1M1avXm2sXr3ayM/Pd25z/D7m5+cb9913n7F48WIjNTXV+Pnnn42BAwcaCQkJLrmPdd0/w3Cvz/D88883unfvbixZssRYsmSJ0a1bN+Oiiy6qso07fX4ff/yx4evra7z55pvGpk2bjHvuuccIDg42du/ebRiGYTzwwAPGhAkTnNvv2rXLCAoKMu69915j06ZNxptvvmn4+voan332mVW7cFJ13b///Oc/xuzZs41t27YZGzZsMB544AEDMGbOnGnVLpxUfn6+898YYDz//PPG6tWrjbS0NMMw3P/zM4y676M7fYa33367ERYWZsyfP7/Kd15RUZFzG1f5DBVmamnGjBkGUO3leIAxY8YM53W73W48+uijRmxsrOHv728MGzbMWL9+fSNXX3sTJ06sdh9//vln5zbH72NRUZExevRoIzo62vD19TWSkpKMiRMnGnv27LFmB06hrvtnGO71Gebk5BjXXnutERISYoSEhBjXXnvtCaeAutvn98orrxitWrUy/Pz8jN69e1c5LXTixInG8OHDq2w/f/58o1evXoafn5/RunVr47///W8jV1w3ddm/p59+2mjbtq0REBBgNG/e3BgyZIjxzTffWFB17ThOQ/79ZeLEiYZheMbnV9d9dKfPsKbvvOP/f3SVz9B2rGARERERt9Tkz2YSERER96YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gREbdSUVHBoEGDuPzyy6vcnpubS2JiIv/4xz8sqkxErKIRgEXE7Wzfvp2ePXsyffp0rr32WgCuv/561q5dy/Lly/Hz87O4QhFpTAozIuKWXnrpJR577DE2bNjA8uXLufLKK1m2bBk9e/a0ujQRaWQKMyLilgzD4Oyzz8bb25v169dz11136RCTSBOlMCMibmvLli106tSJbt26sWrVKnx8fKwuSUQsoA7AIuK23nrrLYKCgkhNTWXfvn1WlyMiFlHLjIi4pSVLljBs2DC+++47nnnmGSoqKpg3bx42m83q0kSkkallRkTcztGjR5k4cSK33nor55xzDm+88QbLly/ntddes7o0EbGAwoyIuJ0HHngAu93O008/DUBSUhLPPfcc999/P7t377a2OBFpdDrMJCJuZcGCBYwaNYr58+czZMiQKvedd955lJeX63CTSBOjMCMiIiJuTYeZRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm7t/wGi7Y5FRrg9wgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_title(\"Mehrfachplot\") # Titel\n", + "ax.set_xlabel(\"X\") #x-Achsenbeschriftung\n", + "ax.set_ylabel(\"Y\") # y-Achsenbeschriftung\n", + "\n", + "ax.plot(x, xQuadrat, label=\"$x^2$\") # label: Eintrag Legende, versteht auch LaTex!\n", + "ax.plot(x, x**4, label=\"$x^4$\") # label\n", + "\n", + "ax.legend() # Zeige Legende\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**b)** Kopieren Sie das Grundgerüst und ersetzen sie die x-Werte durch das oben definierte array `t` und die y-Werte durch die errechnete Bahnkurve. Wählen Sie auch hier einen geeigneten Titel und Achsenbeschriftungen." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:21:24.775267Z", + "start_time": "2019-11-01T10:21:24.689518Z" + } + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**c)** Variieren Sie nun die Anfangsgeschwindigkeit. Erstellen Sie zwei Kurven mit verschiedenen Bedingungen (z.B. $v_0 = 10$ und $v_0=20$). Vergleichen Sie die Kurven miteinander, indem Sie diese in einem Diagramm darstellen. Benutzen Sie angemessene Beschriftungen!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:21:24.776711Z", + "start_time": "2019-11-01T10:21:24.023Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "latex_envs": { + "LaTeX_envs_menu_present": true, + "autoclose": true, + "autocomplete": true, + "bibliofile": "biblio.bib", + "cite_by": "apalike", + "current_citInitial": 1, + "eqLabelWithNumbers": true, + "eqNumInitial": 1, + "hotkeys": { + "equation": "Ctrl-E", + "itemize": "Ctrl-I" + }, + "labels_anchors": false, + "latex_user_defs": false, + "report_style_numbering": false, + "user_envs_cfg": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/S1/ExPhyI/Hahn_ExPhy1_Woche3.pdf b/S1/ExPhyI/Hahn_ExPhy1_Woche3.pdf new file mode 100644 index 0000000..81b6aa3 Binary files /dev/null and b/S1/ExPhyI/Hahn_ExPhy1_Woche3.pdf differ diff --git a/S1/ExPhyI/Hahn_ExPhy1_Woche3.typ b/S1/ExPhyI/Hahn_ExPhy1_Woche3.typ new file mode 100644 index 0000000..389e2ed --- /dev/null +++ b/S1/ExPhyI/Hahn_ExPhy1_Woche3.typ @@ -0,0 +1,58 @@ += Aufgabe 1 Freier Fall mit Reibung (10 Punkte) + +In der Vorlesung wurde der freie Fall von Körpern unter Vernachlässigung der Luftreibung besprochen. + +Dabei wirkt nur die (konstante) Erdanziehungskraft $F_g = (0,0, −m g)$ auf das Teilchen. Den Effekt der Luftreibung können wir (für nicht zu hohe Geschwindigkeiten) mit Stokesscher Reibung modellieren; dabei wirkt eine zweite, abbremsende Kraft $F_r = (0,0, −β v)$ mit Parameter $beta$ (Abhängig unter anderem von der Gröûe und Form des Teilchens, aber auch von Eigenschaften der Luft). + +Die Trajektorie kann dann geschrieben werden als: + +$z_r (t) = z_0 - (g m)/β (t - m/beta (1-e^((-beta t)/m))$ + +(a) Bestimmen Sie daraus die Geschwindigkeiten $v(t)$ des Teilchens. + +$v_r (t) = -(g e^((-beta t)/m) +(g m)/β)$ + +(b) Leiten Sie nun die Beschleunigung $a(t)$ des Teilchens her. + +$a_r (t) = (g beta)/m e^((-beta t)/m)$ + +(c) Nähern Sie für $x = (β t)/m << 1 $ die Exponentialfunktion bis zur zweiten Ordnung in $x$, und zeigen Sie, dass zu Beginn die Trajektorie mit der für den reibungsfreien Fall übereinstimmt. + +(d) Skizzieren Sie $z_g (t)$ (freier Fall ohne Reibung) und $z_r (t)$ (mit Reibung) in einem gemeinsamen Graphen. + +(e) Skizzieren Sie separat $v_r (t)$ und $a_r (t)$. + += Aufgabe 3.2 Zugkraft (5 Punkte) + +Wir betrachten ein von der Decke herunterhängendes Seil mit linearer Massendichte $rho$ (Einheit: Kilogramm pro Meter) und Länge $L$. Bestimmen Sie die Zugkraft $T(z)$ (Einheit: Kilogramm × Meter / $"Sekunde"^2$) als Funktion der Höhe $z$. Hier ist die stationäre Lösung gesucht, d.h. alle Kräfte gleichen sich aus. + +(a) Fertigen Sie zunächst eine Skizze an. + +Das Seil endet genau im Ursprung des Koordinatensystems. + +(b) Definieren Sie ein Koordinatensystem (die z-Achse genügt hier). + +(c) Beschreiben Sie in Worten die Zugkraft: Was sind ihre Ursachen, was bewirkt sie? + +Ursachen fuer die Zugkraft sind die Masse $m$ des Seils kombiniert mit der Erdbeschleunigung $g$. Nun ist es so, dass Die Zugkraft an der Aufhaengung des Seils maximal ist und bei kleinerem $z$ linear abnimmt. + +Das liegt daran, dass nur die Masse des Seils unter dem Aufhaengungspunkt (Fixierpunkt) zur Zugkraft $T$ beitraegt. + +(d) Berechnen Sie $T(z)$ und überprüfen Sie die Einheiten. + +Man definiere die Masse als $m(z) = (L - z) rho$, wobei $0 <= z <= L$. + +Dann folgt fuer aus der Kraftbeziehung $F = m a$ die Zugkraft $T(z) = m(z) g = (L - z) rho g$. + +Einheiten der verwendeten Groessen sind gegeben als: + +$[T] = N$; +$[rho] = (k g)/m$; +$[L - z] = m$; +$[m] = k g$; +$[g] = m/s^2$; + +Einsetzen liefert folgende Aequivalenz: + +$[(L - z) rho g] = [L - z] [rho] [g] = m (k g)/m m/s^2 = (m k g)/s^2 = N = [T]$ + diff --git a/S1/ExPhyI/VL10.pdf b/S1/ExPhyI/VL10.pdf new file mode 100644 index 0000000..ec4622d Binary files /dev/null and b/S1/ExPhyI/VL10.pdf differ diff --git a/S1/ExPhyI/VL10.typ b/S1/ExPhyI/VL10.typ new file mode 100644 index 0000000..f5fee48 --- /dev/null +++ b/S1/ExPhyI/VL10.typ @@ -0,0 +1,38 @@ +//2024-11-22 +// + += Inertialsysteme + +Zunaechst: keine Rotation + +Zwei Bezugssysteme $S(x,y,z) quad S'(x',y',z')$ (Relativbewegung mit $arrow(u)$) + +Die Relativbewegung muss sehr viel kleiner als die Lichtgeschwindigkeit sein (Zeitdiletation?) + +Ort, geschwindigkeit und Beschleunigung koennen in abhaengigkeit von u berechnet werden. + +Die Beschleunigung bleibt gleich. + +#rect([Transformation: Galilei-Transformation]) + +Beide Systeme sind fuer die Beschreibung der physikalischen Gesetze aequivalent (Inertialsysteme) + +== Geradlinig beschleunigte Bezugssteme + +$ arrow(u) = arrow(u) (t) quad arrow(a) != arrow(a)' $ + +Beobachter im beschleunigten BS kann dies feststellen und miteinbeziehen -> die gleichen physikalischen Gesetze gelten. + +$S'$ ist jetzt kein Interalsystem! + +$ x = x' + u_0 t + 1/2 a t^2 $ + +BS eines fallenden Koerpers + +$ y = y' \ +t = t' $ + +=== Gedanken-Experiemente + ++ Beispiel: + diff --git a/S1/ExPhyI/VL11.pdf b/S1/ExPhyI/VL11.pdf new file mode 100644 index 0000000..c7356ea Binary files /dev/null and b/S1/ExPhyI/VL11.pdf differ diff --git a/S1/ExPhyI/VL11.typ b/S1/ExPhyI/VL11.typ new file mode 100644 index 0000000..351844b --- /dev/null +++ b/S1/ExPhyI/VL11.typ @@ -0,0 +1,24 @@ +#import "@preview/pinit:0.2.2": * +#set math.equation(numbering: "(1)") + += Behaelter mit Wasser + +Freie #pin(5)Oberflaeche des Wassers ist $perp arrow(g)$ + +Im rotierenden System gilt wieder Oberflaeche $perp arrow(F)_"ges"$ + +// Add graphic with ticx + +// Use the physicspackage + $ tan(alpha) = (omega^2 r)/2#pin(4) = (d z (r))/(d r) $ + +A simple #pin(1)highlighted text#pin(2). + +#pinit-highlight(1, 2) + +#pinit-point-from((1, 2))[It is simple.] +#pinit-point-from(5)[It is simple.] +#pinit-point-from(4)[It is simple.] + +he: + diff --git a/S1/ExPhyI/VL12.pdf b/S1/ExPhyI/VL12.pdf new file mode 100644 index 0000000..b8f7c79 Binary files /dev/null and b/S1/ExPhyI/VL12.pdf differ diff --git a/S1/ExPhyI/VL12.typ b/S1/ExPhyI/VL12.typ new file mode 100644 index 0000000..7100698 --- /dev/null +++ b/S1/ExPhyI/VL12.typ @@ -0,0 +1,70 @@ += Stoesse + +JES: $arrow(p_1)' + arrow(p_2)' = arrow(p_1) + arrow(p_2)$ #h(10pt) (' $->$ #underline([nach]) dem Stoss) + +EES: ("innere Energie") + +Wir unterscheiden: + +$U = 0$: elastischer Stoss + +$U < 0, E_("kin")' < E_("kin"): inelastischer Stoss + +- zentraler Stoss + +- nicht zentraler Stoss + +Beispiel: + +- zentraler, elastischer Stoss + +- Impuls wird sukzessiv weitergegeben + +- Warum fliegt nicht 1 Kugel mit 2v weg, wenn vorne 2 Kugeln stossen? IES und EES muessen erfuellt sein (EES ist quadratisch mit der Geschwindigkeit) + +- Nur 2 Kugeln: elastischer vs. inelastischer Stoss + += Elastische Stoesse + +Geg: $m_1, m_2, arrow(v)_1, arrow(v)_2$ #h(10pt) (vor dem Stoss) + +Ges: $arrow(v)'_1, arrow(v)'_2$ (nach dem Stoss) + +Wahl des Koordinatensystems: mitbewegt, $v_2 = 0$ + +EES: $ 1/2 m_1 v_1^2 = 1/2 m_1 v'_1^2 + 1/2 m_2 v'_2^2 $ + +JES: $ m_1 arrow(v_1) = m_1 arrow(v') + m_2 arrow(v'_2) $ + +Man berechne: + +@jes quadrieren + +@ees ($dot 2 m_1$) + +Es folgt: + +$ 2 m_1 arrow(v_1)' dot arrow(v_2)' + m_2 v_2'^2 = m_1 v'_2^2 $ + +$ arrow(v_1)' dot arrow(v'_2) = (m_1 - m_2)/(2 m_1) v'_2^2 $ + ++ $m_1 = m_2; arrow(v')_1 dot arrow(v')_2 = 0 --> v'_1 = 0$ + + zentraler Stoss + ++ $m_1 = m_2$ $arrow(v')_1 perp arrow(v')_2$ + + nicht zentral + + Teile die Geschwindigkeiten der beiden Massen in seine Komponenten auf. + + Dabei behaelt $m_1$ die Tangentialkomponente, wohingegen $m_2$ Zentralkomponente bekommt. + ++ $m_1 != m_2$, zentraler Stoss + + $ v'_1 = (m_1 - m_2)/(2 m_1) v'_2 $ + ++ $m_1 < m_2 -> v'_1 < 0$ ($m_1$ wird reflektiret) + ++ + diff --git a/S1/ExPhyI/VL17.pdf b/S1/ExPhyI/VL17.pdf new file mode 100644 index 0000000..b345fff Binary files /dev/null and b/S1/ExPhyI/VL17.pdf differ diff --git a/S1/ExPhyI/VL17.typ b/S1/ExPhyI/VL17.typ new file mode 100644 index 0000000..5f5a661 --- /dev/null +++ b/S1/ExPhyI/VL17.typ @@ -0,0 +1,71 @@ +// 12/18/2024 + += Gekoppelte Schwingungen + +Zwei Fadenbendel mit Kopplungsfeder. + +Es gelten die Bewegungsleichungen: + +$ m_1 dot.double(x_1) = - D_1 x_1 - D_(1 2) (x_1 - x_2) \ + m_2 dot.double(x_2) = - D_2 x_2 - D_(12) (x_2-x_1) $ + +diese stellen ein gekoppeltes DLG-System dar und koennen nur gemeinsam geloest werden. + +Spezialfall: $m_1 = m_2 = m$ + + +Fall: $A_1 = A_2 = A$ + +$ x_1 = (psi^+ + psi^-) = ... = 2A &cos((omega_1 - omega_2)/2 t + (phi_1 - phi_2)/2) dot \ &cos((omega_1 + omega_2)/2 t + (phi_1 + phi_2)/2) $ + +d.h. die Schwingungsenergie wird zwischen den beiden Pendeln hin- und hergereicht. + + +#table( + columns:2, + [*gleichphasige Schwingung*], [*gegenphasige Schwingung*], + [Feder nicht beansprucht], [], + $psi^- = 0$, [], + [phi_1 - phi_2 = phi] +) + +Bemerkung: bei nicht-identischen Pedeln: unvollstaendiger Energie-Uebertrag + +== Beispiele + +Zwei Massen $m_1, m_2$ mit zwei Faeden mit laenge $l$ miteinander verbunden und haengend. + +$ l = l_1 = l_2 \ +m_1 >> m_2 $ + +Energiebetrachtung $m_1/2 v_(1_"max")^2 =^"EES" m_2/2 v_(2_max)^2$ + + += Mechanische Wellen + +MP $m_1$ gekoppelt an $m_i$ ($k$ MP). + ++ Schwingung breitet sich im Raum aus ++ Schwingungsenergie wird transportiert (keine Materie) + +z.B. Schallwellen, Wasserwellen + +Wir betrachten die Ausbreitung in #underline[einer Richtung]. + +== Darstellung harmonischer Wellen + +$ xi(z, t) = A sin(omega(t-z/v)) = A sin(omega t - k z), quad k = 2 pi/lambda, v eq "Phasengeschwindigkeit" $ + +Hier ist $xi$ i.A. nicht der Ort, kann z.B auch der Schallauch sein, el. Feldstaerke. + +Wellenlaenge $lambda$: Abstand $Delta z$ zweier Punkte, fuer die die Auslenkung $xi(z_1, t) = xi(z_2,t)$ zur gleichen Zeit $t$ + +Phasengeschwindigkeit: Geschwindigkeit, mit der sich die Phase ausbreitet $v = omega/k = 2 pi v lambda/(2 pi) = v lambda$ + +$ xi(z,t)&=c e^(i(omega z - k z)) + c^* e^(-i(omega t - k z)) \ &=A cos(omega t-k z)+B sin(omega t-k z) \ "mit" A&=c+c^* quad B=i(c-c^*) $ + +an jedem festen Ort $z=z_0$: zeitlich periodische harmoische Schwingung + +$ xi(t)=A sin(omega t-k z_0)=A sin(omega t-phi) $ + +zu jedem festen Zeitpunkt: diff --git a/S1/ExPhyI/VL6.pdf b/S1/ExPhyI/VL6.pdf new file mode 100644 index 0000000..922adf6 Binary files /dev/null and b/S1/ExPhyI/VL6.pdf differ diff --git a/S1/ExPhyI/VL6.typ b/S1/ExPhyI/VL6.typ new file mode 100644 index 0000000..8ad47ff --- /dev/null +++ b/S1/ExPhyI/VL6.typ @@ -0,0 +1,142 @@ += Arbeit, Leistung, Energie + +Arbeit ist ein Skalarprodukt von der Kraft und dem Weg. + +Leistung ist die Ableitung der Arbeit nach der Zeit. + +Energie ist eigentlich das Gleiche wie die Arbeit. + +Beispiele: Flaschenzug, Schraege Rampe + +== Wegunabhaengige Arbeit und konservative Kraftfelder + +- Falls $W_a = W_b$ fuer beliebige Wege $a, b$, ist das Weg-Integral *wegunabhaengig* und das Kraftfeld *konservativ*. + +aequivalent dazu sind folgende Aussagen: + +- $integral.cont arrow(F) d arrow(r) = 0$ + +== Einschub: der Nabla-Operator $nabla$ + +$ nabla = {delta/(delta x), delta/(delta y), delta/(delta z)} $ + +partielle Ableitung + ++ *Gradient* (Anwendung auf ein Skalar) + $ nabla f = op("grad") f = {delta/(delta x), delta/(delta y), delta/(delta z)} $ + Der Gradient gibt die Richtung der groessten Aenderung von $f$ an + + // Insert here a 2d graphic of Heightlines with + // a perpendicular gradient vector on them in red + + der Gradient steht senkrecht auf den Hoehenlinien und ist tangential an der Falllinie. + ++ *Divergenz* (Skalarprodukt mit einem Vektor) $arrow(u) = {u_x, u_y, u_z}$ + $ nabla dot arrow(u) = "div" arrow(u) = {delta/(delta x), delta/(delta y), delta/(delta z)} $ + + anschaulich: Quellen und Senken eines Vektorfeldes + ++ *Rotationen* (Vektorprodukt mit einem Vektor) + $ nabla times arrow(u) = "rot" arrow(u) $ (siehe oben) + + anschaulich: Wirbel im Stroemungsfeld + ++ *Kombinationen* $"div grad" f = nabla (nabla f) = Delta f$ (Laplace) + $= (delta^2 f)/(delta x^2), (delta^2 f)/(delta y^2), (delta^2 f)/(delta z^2)$ + + +Energie = gespeicherte Arbeit $[E] = J$ + +$=$ die Faehigkeit, Arbeit zu verrichten + +Beispiel: Hubarbeit $m dot g dot h arrow$ potientielle Energie $m dot g dot h arrow "loslassen" arrow "kinetische Energie" 1/2 m v^2$ + +== Der Energie-Erhaltungs-Satz (EES) + +2. Newtonsches Gesetz: $arrow(F) = m (d arrow(v))/(d t)$ + + $ integral arrow(F) dot arrow(v) d t = m integral (d arrow(v))/(d t) arrow(v) d t$ + + $I = integral arrow(F) dot arrow(v) d t = integral arrow(F) d arrow(r) = E_p^1 - E_p^2$ (Arbeit, potientielle Energie) + + $II = m integral arrow(v) d arrow(r) = m/2 v^2_2 = m/2 v_1^2 = E_("kin")^2 - E_("kin")^1$ + + $ --> E_("kin")^1 + E_p^1 = E_("kin")^2 + E_p^2$ (EES der Mechanik) + + Beschleunigungsarbiet (2.NG) wird als Zuwachs kinetischer Energie gespeichert. + +- Energie wird nicht "erzeugt" oder "verbraucht" +- Energieformen werden ineinander umgewandelt + +Beispiel: Pendel + +// Skizze einfuegen + +1. $v = 0 arrow E_("kin") = 0, h = h_("max") arrow E_("pot") = m g h_("max")$ + +2. $v = v_("max") arrow E_("kin") = 1/2 m v_("max")^2, h = 0 arrow E_("pot") = 0$ + +3. Siehe 1 + += Kraftfelder und Potential + +Wir nehmen ein konservatives Kraftfeld an und gehen von Punkt $P$ um $delta arrow(r)$ zu Punkt $P'$ + +// Skizze von verschiedenen Wegen von Punkt P zu P' in 2D und der Steitung dy +// Vektoren fuer die Kraefte sind eingezeichnet + +es aendert sich die potientielle Energie $E_p (x, y, z) = E_p (P)$ um $delta E_p = (delta E_p)/(delta x) delta x + (delta E_p)/(delta y) delta y + (delta E_p)/(delta z) delta z$ + +da wir eine Strecke in einem Kraftfeld zuruecklegen, verrichten wir Arbeit $delta W = arrow(F) dot d arrow(r) = - delta E_p$ $delta W = arrow(F) dot d arrow(r) = - delta E_p$ (gespeichert als potientielle Energie) + +--> $F_x delta x + F_y delta y + F_z delta z =^"von oben" - (delta E_p)/(delta x) delta x - (delta E_p)/(delta y) delta y - (delta E_p)/(delta z) delta z$ + +daher $F_x = - (delta E_p)/(delta x) delta x F_y = - (delta E_p)/(delta y) delta y F_z = - (delta E_p)/(delta z) delta z$ + +$arrow(F) = - "grad" E_p = - nabla E_p$ + +Nachtrag: Es existiert ein Skalarfeld DURCHSCHNITT $(arrow(r))$ (Potential), sodass $arrow(F) = - k nabla o (arrow(r))$ + +($<--> arrow(F)(arrow(r))$ ist ein konservatives Kraftfeld) + + + +== Drehimpuls und Drehmoment + +MP mit Impuls $arrow(p)$ auf Bahn $arrow(r) (t)$ + +Definition: $arrow(L) = arrow(r) times arrow(p) = m (arrow(r) times arrow(v))$ Drehimpuls + +wichtig: immer in Bezug auf den Koordinatenursprung $O$. + +wir zerlegen $arrow(v) "in" arrow(v)_r || arrow(r)$ und $arrow(v)_phi "senkrecht" r$ (Polarkoordinaten) + +$ --> arrow(L) = m [ arrow(r) times (arrow(v)_r + arrow(v)_phi)] = m arrow(r) times arrow(v)_phi$ + +$abs(arrow(L)) = m r omega r sin(90 degree) = m r^2 dot(phi)$ + +$dot(arrow(L)) = (d arrow(L))/(d t) = [(d arrow(r))/(d t) times arrow(p)] + [arrow(r) times (d arrow(p))/(d t)]$ + +$= arrow(v) times arrow(p) + arrow(r) times dot(arrow(p)) = arrow(r) times arrow(F)$ + + +Definition: $arrow(D) = dot(arrow(L)) = arrow(r) times arrow(F)$ (Drehmoment) + +=== Analogie + +#table( + columns: 2, + [Translation], [Rotation], + [Impuls $arrow(p)$], [Drehimpuls $arrow(L) = arrow(r) times arrow(p)$], + [Kraft $arrow(F) = dot(arrow(p))$], [Drehmoment $arrow(D) = dot(arrow(L)) = arrow(r) times arrow(F)$], + [1. NG $arrow(p) = "const" <--> arrow(F) = 0$], [$arrow(L) "const" <--> arrow(D) = 0$], + [Position $arrow(r)$], [Winkel $phi$], + [Geschwindigkeit $arrow(v) = dot(arrow(r))$], [Winkelgeschwindigkeit $arrow(omega) = dot(phi) arrow(e)_z$], +) + +Beispiel: Zentralkraftfelder $arrow(F) = f(r) arrow(e)_r$ + +$ arrow(D) = f(r) arrow(r) times arrow(e)_r = 0 = dot(arrow(L))$ + +$ --> arrow(L) = "const"$ + diff --git a/S1/ExPhyI/VL9.pdf b/S1/ExPhyI/VL9.pdf new file mode 100644 index 0000000..4a183bd Binary files /dev/null and b/S1/ExPhyI/VL9.pdf differ diff --git a/S1/ExPhyI/VL9.typ b/S1/ExPhyI/VL9.typ new file mode 100644 index 0000000..7865137 --- /dev/null +++ b/S1/ExPhyI/VL9.typ @@ -0,0 +1,56 @@ +//2024-11-20 + +#import "@preview/physica:0.9.3": curl, grad, tensor, pdv +#import "@preview/unify:0.6.1": num,qty,numrange,qtyrange + +//////////////////////// += Bestimmung von G mit der "Torsionsdrehwaage" + +$ s^* = 1/2 a^* t^2 $ + +$ a = l/L (s^*)/(2t^2) = F/m = G M/r^2 $ + +Wir haben gemessen $s^* (t)$ + +Wir berechnen: $G = (r^2)/M l/(2L) (s^*)/t^2 = "3,53 x 10^-6 m^2/kg s^* t^2"$ + +Tafelaufschrieb letzte Stunde: #table(columns: 2, $(s^*)/(c m)$, $t/s$, [1], [24], [4], [50], [9], [79]) +df + +- Wertepaar einsetzen $G = qty("6.13e-11", "m^3/kg/s^2)")$ + +////////////////////////// += Planetenbahnen +Hello + +- im Gravitationsfeld der Sonne ist die Gesamtenergie konstant + +$ E = E_p + E_("kin") $ + +- der Drehimpuls $arrow(L) = arrow(r) times arrow(p)$ eines Planeten ist zeitlich konstant + +- ebene Polarkoordinaten $(r, phi)$, Ursprung in der Sonne + +$ E_("kin") = 1/2 m v^2 = 1/2 m (v_r^2 + v_phi^2) = m/2 (dot(r)^2 + (r dot(phi)^2)) $ // * + +$ arrow(L) = m ( arrow(r) times arrow(p)) = m[(arrow(r) times arrow(v)_r) + (arrow(r) times arrow(v)_phi)] = m (arrow(r) times arrow(v)_phi)) $ + +$ abs(arrow(L)) = m r^2 dot(phi) = L $ + +// * -> +$ E_p + m/2 dot(r)^2 + L^2/(2 m r^2) = E = "const." $ + +- Das effektive Potential (Potientelle Energie plus die Zentrifugal "energie") + += Das Gravitationsfeld ausgedehnter Koerper + +Motivation: Rechtfertigung fuer das Benutzen von Massepunkten + +Hohle Kugeln +hal + +ha +this + + + diff --git a/S1/ExPhyI/ha3.ipynb b/S1/ExPhyI/ha3.ipynb new file mode 100644 index 0000000..bf1da98 --- /dev/null +++ b/S1/ExPhyI/ha3.ipynb @@ -0,0 +1,311 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hausaufgabe Blatt 3\n", + "## Gleichförmig beschleunigte, geradlinige Bewegung - Revisited\n", + "\n", + "In dieser Aufgabe werden wir die Bahnkurve eines gleichförmig beschleunigten Objektes in einer Dimension berechnen und dieses mal auch visualisieren. Die Position $x$ zum Zeitpunkt $t$ ist, wie auf dem Blatt 2, gegeben durch folgende Gleichung:\n", + "\\begin{equation*}\n", + "x\\!\\left( t \\right) = x_0 + v_0 t + \\frac{1}{2} a t^2 \n", + "\\end{equation*}\n", + "wobei $x_0$ und $v_0$ die Anfangsposition und -geschwindigkeit sind und $a$ die konstante Beschleunigung, die auf das Objekt wirkt. \n", + "\n", + "## 1. Numpy Arrays: Linspace\n", + "Anstelle, dass wir die Einträge in numpy arrays \"per Hand\" definieren, können wir eine nützliche Funktion verwenden. \n", + "\n", + "**a)** \n", + "Machen Sie sich mit der nachstehenden Zelle vertraut. Verstehen Sie die Syntax?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.227336Z", + "start_time": "2019-11-01T10:22:27.100666Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0. 0.25 0.5 0.75 1. ]\n" + ] + } + ], + "source": [ + "import numpy as np # Laden der Numpy Bibliothek \n", + "\n", + "x = np.linspace(0, 1, 5) # Definieren von x\n", + "\n", + "print(x) # Ausgabe x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**b)** Erstellen sie ein numpy array für die Zeit `t` indem sie `np.linspace()` korrekt verwenden. Dabei soll gelten $t_0 = 0$ und $t_N = 5$ mit der Anzahl der Einträge $N = 50$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**c)** Benutzen Sie die in ha2 Aufgabe 2 definierte Funktion `printBahnkurve()` um sich nun die Bahnkurve für das gerade erstellte array `t` ausgeben zu lassen. Verwenden Sie die Werte $x_0=3$ und $v_0=10$ wie auf Blatt 2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Return\n", + "\n", + "Bisher hat unsere definierte Funktion lediglich einen `print()` Befehl ausgeführt. Wir wollen nun, dass unsere Funktion einen Wert zurück gibt. Dadurch kann der Wert in einer Variablen gespeichert und somit weiterverarbeitet werden. Dazu verwenden wir das `return` Statement. \n", + "\n", + "**d)** Betrachten Sie die folgenden zwei Funktionen. Beschreiben Sie kurz (1-2 Sätze), was hier geschieht. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.233313Z", + "start_time": "2019-11-01T10:22:27.230416Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 4\n" + ] + } + ], + "source": [ + "def identity(x): # definiere Funktion\n", + " return x # definiere Ausgabe\n", + "\n", + "def square(x):# definiere Funktion\n", + " return x**2 # definiere Ausgabe\n", + "\n", + "id2 = identity(2) # definiere id2 über Zugriff auf identity\n", + "square2 = square(2)# definiere id2 über Zugriff auf square\n", + "\n", + "print(id2, square2) # Ausgabe der Werte" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**e)** Schreiben Sie eine neue Funktion, indem Sie den `print()` Befehl in der Funktion `printBahnkurve()` durch das `return` Statement ersetzen. Wählen Sie einen geeigneten Namen für die neue Funktion. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualisierung\n", + "Da Sie nun dazu in der Lage sind, viele Datenpunkte zu erzeugen, wollen wir als nächsten Schritt die berechnete Bahnkurve in einem plot mithilfe von `matplotlib.pyplot` visualisieren. `Matplotlib` ist eine beliebte und sehr vielseitige plot Bibliothek, die es uns ermöglicht Daten zu visualisieren. Wer einen Eindruck davon gewinnen möchte, was alles mit `matplotlib` möglich ist, kann ja mal [hier](https://matplotlib.org/3.1.1/gallery/index.html) vorbeischauen!\n", + "\n", + "Wir haben folgendes Grundgerüst vorbereitet, in dem die Funktion $f(x) = x^2$ beispielhaft geplottet wird." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:42.277126Z", + "start_time": "2019-11-01T10:22:42.160402Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkJUlEQVR4nO3deVhU9eIG8Hc2ZlgHRdkEBFxwQRHBBXPHJXfLFsvU1pultni93bRum3ntdrtl/irNUnOp9CZq7ulNQE0UUVTccENQFhEEhnUGZs7vD2ASQQRlOLO8n+eZ54nDGXiPx+D1nO/5fiWCIAggIiIishJSsQMQERERNSWWGyIiIrIqLDdERERkVVhuiIiIyKqw3BAREZFVYbkhIiIiq8JyQ0RERFaF5YaIiIisCssNERERWRWWGyIymR9++AESicT4ksvl8PHxwXPPPYf09PRmzzN48GAEBwc3+dccPHhwk35NInowcrEDEJH1W7VqFTp16oTS0lLs378fixYtQmxsLJKSkuDo6Ch2PCKyMiw3RGRywcHBCA8PBwAMGTIEer0eCxYswJYtWzBlypT7/rqlpaWwt7dvqphEZCV4W4qIml3fvn0BAKmpqfjwww/Rp08ftGzZEi4uLujZsydWrFiBO9f09ff3x9ixY7Fp0yaEhoZCpVLhww8/BAB8/fXXGDhwINzd3eHo6Ihu3brh008/RXl5eZ3f/8CBA+jbty/s7e3Rpk0b/OMf/4Ber6+xj06nw8cff4xOnTpBqVSidevWeO6553Dz5k0T/IkQUVPilRsianaXLl0CALRu3RqHDh3Cyy+/DD8/PwDA4cOHMXv2bKSnp+O9996r8b7jx4/j3LlzePfddxEQEGC8pXX58mU8/fTTCAgIgJ2dHU6ePImFCxfi/PnzWLlyZY2vkZWVhcmTJ+Ptt9/GRx99hB07duDjjz9GXl4evvrqKwCAwWDAhAkTcODAAbz11lvo168fUlNT8f7772Pw4MFISEjgFSMicyYQEZnIqlWrBADC4cOHhfLycqGwsFDYvn270Lp1a8HZ2VnIysqqsb9erxfKy8uFjz76SHBzcxMMBoPxc23bthVkMpmQnJxc7/es/hpr1qwRZDKZcOvWLePnBg0aJAAQfv311xrveemllwSpVCqkpqYKgiAIP//8swBAiIqKqrHf0aNHBQDCN998U+NrDho0qFF/LkRkWrwtRUQm17dvXygUCjg7O2Ps2LHw9PTErl274OHhgX379mHYsGFQq9WQyWRQKBR47733kJubi+zs7Bpfp3v37ujYsWOtr5+YmIjx48fDzc3N+DWmTZsGvV6PCxcu1NjX2dkZ48ePr7Ht6aefhsFgwP79+wEA27dvh6urK8aNG4eKigrjq0ePHvD09ERMTEzT/gERUZPibSkiMrk1a9agc+fOkMvl8PDwgJeXFwAgPj4eI0aMwODBg/Hdd9/Bx8cHdnZ22LJlCxYuXIjS0tIaX6f6fbdLS0vDgAEDEBQUhC+//BL+/v5QqVSIj4/HzJkza30NDw+PWl/D09MTAJCbmwsAuHHjBvLz82FnZ1fn8eTk5DT+D4GImg3LDRGZXOfOnY1PS91u/fr1UCgU2L59O1QqlXH7li1b6vw6Eomk1rYtW7aguLgYmzZtQtu2bY3bT5w4UefXuHHjRq1tWVlZAAA3NzcAQKtWreDm5obdu3fX+TWcnZ3r3E5E5oHlhohEUz2xn0wmM24rLS3F2rVrG/U1AECpVBq3CYKA7777rs79CwsLsXXr1hq3pn766SdIpVIMHDgQADB27FisX78eer0effr0adQxEZH4WG6ISDRjxozB559/jqeffhp/+ctfkJubi88++6xGUbmX4cOHw87ODk899RTeeustlJWVYenSpcjLy6tzfzc3N7zyyitIS0tDx44dsXPnTnz33Xd45ZVXjE9sTZ48GT/++CNGjx6N119/Hb1794ZCocD169cRHR2NCRMm4JFHHmmSPwMianocUExEohk6dChWrlyJpKQkjBs3Du+88w4ee+wxvP322w3+Gp06dUJUVBTy8vLw6KOPYvbs2ejRoweWLFlS5/6enp746aefsHr1aowfPx7//e9/MX/+/Br7y2QybN26FfPnz8emTZvwyCOPYOLEifjkk0+gUqnQrVu3Bz52IjIdiSDcMVMWERERkQXjlRsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWxeYm8TMYDMjIyICzs3OdU7kTERGR+REEAYWFhfD29oZUWv+1GZsrNxkZGfD19RU7BhEREd2Ha9euwcfHp959bK7cVC94d+3aNbi4uIichoiIiBpCo9HA19e3QQvX2ly5qb4V5eLiwnJDRERkYRoypIQDiomIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVTGbcrNo0SJIJBK88cYb9e4XGxuLsLAwqFQqBAYGYtmyZc0TkIiIiCyCWZSbo0ePYvny5ejevXu9+6WkpGD06NEYMGAAEhMTMX/+fLz22muIiopqpqRERERk7kQvN0VFRZgyZQq+++47tGjRot59ly1bBj8/PyxevBidO3fGiy++iOeffx6fffZZM6Wtn6asHCev5Ysdg4iISDTxKbegrdCLmkH0cjNz5kyMGTMGw4YNu+e+cXFxGDFiRI1tI0eOREJCAsrLy+t8j1arhUajqfEyhRPX8hG+4H94aU0C9AbBJN+DiIjInGUWlOKJb+PQe+HvKCyr+/dycxC13Kxfvx7Hjx/HokWLGrR/VlYWPDw8amzz8PBARUUFcnJy6nzPokWLoFarjS9fX98Hzl2Xzl7OUCqkyC7U4ujVWyb5HkREROZsx6lMAEBHDyc4qxSi5RCt3Fy7dg2vv/461q1bB5VK1eD3SSSSGh8LglDn9mrz5s1DQUGB8XXt2rX7D10PpVyGh7t6AgC2n8owyfcgIiIyZ9urys3Y7t6i5hCt3Bw7dgzZ2dkICwuDXC6HXC5HbGwslixZArlcDr2+9v06T09PZGVl1diWnZ0NuVwONze3Or+PUqmEi4tLjZepjA2pPJm7krJQoTeY7PsQERGZm2u3SnDiWj6kEmBUN09Rs8jF+saRkZFISkqqse25555Dp06d8Pe//x0ymazWeyIiIrBt27Ya2/bs2YPw8HAoFOJd/qrWr50bWjraIbdYh7gruRjQobXYkYiIiJrFjqTKqzZ9Atzg7tzwOzKmINqVG2dnZwQHB9d4OTo6ws3NDcHBwQAqbylNmzbN+J4ZM2YgNTUVc+bMwblz57By5UqsWLECc+fOFeswalDIpHg4uLKtbjvJW1NERGQ7qodkjA3xEjmJGTwtVZ/MzEykpaUZPw4ICMDOnTsRExODHj16YMGCBViyZAkmTZokYsqaxlXdZ9x9Ogu6Ct6aIiIi63c1pxin0zWQSSXG8adiEu22VF1iYmJqfPzDDz/U2mfQoEE4fvx48wS6D70DWqK1sxI3C7U4eOkmhnbyuPebiIiILFj1VZt+7dzg5qQUOY2ZX7mxRDKpBGO6VV6S23YyU+Q0REREpvfnU1Li35ICWG5MYlzV/ca9Z2+grFzcWRqJiIhM6VJ2Ic5nFUIulWCkGdySAlhuTCLUtwXauNqjSFuBmORsseMQERGZTPVdigEdWsHVwU7kNJVYbkxAKpVgTNWluW2neGuKiIiskyAIfz4lJfLEfbdjuTGR6vuOv5+7gWJthchpiIiIml7yjUJcvlkMO5kUw7uazwM0LDcm0q2NGm3dHFBWbsDv53lrioiIrM/2qltSg4Jaw0XEtaTuxHJjIhKJxHj1hhP6ERGRtal5S8o8npKqxnJjQuOq1pqKTb4JjYhLvxMRETW1MxkaXM0tgVIuRWRn87klBbDcmFSQhzPauztBpzdgz5kbYschIiJqMtV3JYZ2coeT0qzmBGa5MSWJRGJcjqH60h0REZGlMxgEY7kZH2I+T0lVY7kxseoFxA5ezEFesU7kNERERA8uITUPGQVlcFbKMaSTu9hxamG5MbF2rZ3QxcsFFQYBu89kiR2HiIjogW09mQ4AGNHVEyqFTOQ0tbHcNIPqqze8NUVERJauXG/AjqoJaif0ML9bUgDLTbMY263y5MddzsXNQq3IaYiIiO7fwYs5yCspRysnO/Rr5yZ2nDqx3DQDPzcHhPi6wiAAu05zOQYiIrJcW6sGEo/p5gW5zDxrhHmmskLjOKEfERFZuFKdHr9VjR8d36ONyGnujuWmmYzp7gWJBDh6NQ/p+aVixyEiImq038/fQIlOD58W9ujp5yp2nLtiuWkmXmp79PZvCYBXb4iIyDL9euLPuW0kEonIae6O5aYZTai6hLclMV3kJERERI1TUFKO2OSbAP78fWauWG6a0ehunlDIJDifVYjkrEKx4xARETXY7jOZ0OkNCPJwRpCns9hx6sVy04xcHewwOKhyJsctJ3j1hoiILIfxlpSZzm1zO5abZjax6lLe1hMZMBgEkdMQERHdW7amDHFXcgGY51pSd2K5aWaRnStXT03PL8WxtDyx4xAREd3TtlOZEASgp58rfFs6iB3nnlhumplKIcPIrp4AOLCYiIgsQ/XEfeY+kLgay40IJoZWXtLbkZQJXYVB5DRERER3dzWnGCev5UMmlWB0Ny+x4zQIy40IIgLd0MpJifySchy4eFPsOERERHdVfdWmXzs3tHZWipymYVhuRCCXSTGuaqXwLSc4oR8REZknQRDwa9XTvZZySwpguRFN9VNTe89moUhbIXIaIiKi2s5manD5ZjHs5FKM7OohdpwGY7kRSXcfNQJaOaKs3IC9Z7PEjkNERFRL9S2pyE7ucFYpRE7TcCw3IpFIJMa5ArYk8tYUERGZF4NBwLYT1U9Jmf/cNrdjuRHRxNDKW1MHL+Ugp0grchoiIqI/JaTmIaOgDM5KuXF2fUsharlZunQpunfvDhcXF7i4uCAiIgK7du266/4xMTGQSCS1XufPn2/G1E0noJUjQnzU0BsE7DiVKXYcIiIio+plgkZ09YRKIRM5TeOIWm58fHzwySefICEhAQkJCRg6dCgmTJiAM2fO1Pu+5ORkZGZmGl8dOnRopsRNb3z1SuFca4qIiMyEtkJv/Ef3oz0t5ympaqKWm3HjxmH06NHo2LEjOnbsiIULF8LJyQmHDx+u933u7u7w9PQ0vmQyy2qUtxsX4gWpBEhMy0dqbrHYcYiIiBB9PhsFpeXwdFGhb6Cb2HEazWzG3Oj1eqxfvx7FxcWIiIiod9/Q0FB4eXkhMjIS0dHR9e6r1Wqh0WhqvMyJu7MKD7VvBeDPFVeJiIjEtOl41dw2od6QSSUip2k80ctNUlISnJycoFQqMWPGDGzevBldunSpc18vLy8sX74cUVFR2LRpE4KCghAZGYn9+/ff9esvWrQIarXa+PL19TXVodw341NTJ9IhCFwpnIiIxJNXrEN0cjYA4NFQH5HT3B+JIPJvU51Oh7S0NOTn5yMqKgrff/89YmNj71pw7jRu3DhIJBJs3bq1zs9rtVpotX8+iaTRaODr64uCggK4uLg0yTE8qMKycoR//D9oKwzYPrs/gtuoxY5EREQ2au3hVPxjy2l08XLBztcHiB3HSKPRQK1WN+j3t+hXbuzs7NC+fXuEh4dj0aJFCAkJwZdfftng9/ft2xcXL1686+eVSqXxaazql7lxVikwrHPlzI9cKZyIiMS0+fh1AJY5kLia6OXmToIg1LjSci+JiYnw8rKMVUrrUz1B0taTGdAbeGuKiIia39WcYhxPy4dU8ueQCUskF/Obz58/H6NGjYKvry8KCwuxfv16xMTEYPfu3QCAefPmIT09HWvWrAEALF68GP7+/ujatSt0Oh3WrVuHqKgoREVFiXkYTWJQUGuo7RXILtTi0OUcDOjQWuxIRERkYzZX3T3o36E13F1UIqe5f6KWmxs3bmDq1KnIzMyEWq1G9+7dsXv3bgwfPhwAkJmZibS0NOP+Op0Oc+fORXp6Ouzt7dG1a1fs2LEDo0ePFusQmoxSLsO4EC+sO5yGTcfTWW6IiKhZCYJgnHPt0VDLvSUFmMGA4ubWmAFJzS0xLQ+PfHMI9goZjr47DE5KUbsnERHZkGOptzBpaRwc7GRIeHcYHOzM63eQRQ0opj/18HVFYCtHlJbrsSuJyzEQEVHzqZ7b5uFgT7MrNo3FcmNGJBKJcXR69V8yIiIiU9NW6LG9erkFC53b5nYsN2ameqXwuCu5uJ5XInIaIiKyBdHnb6KgtBweLkpEtLO85RbuxHJjZnxaOCCiah0PznlDRETNYXNi5dw2E3u0scjlFu7EcmOGbr81ZWPjvYmIqJnll+iw73zlcguPWPDEfbdjuTFDo7p5QaWQ4kpOMU5cyxc7DhERWbHtpzJRrhfQ2csFnTzN6yni+8VyY4aclHI83NUTAAcWExGRaVVP3Gfpc9vcjuXGTE0KqxytvvVkBrQVepHTEBGRNUrNLcax1DxIJX8uA2QNWG7MVL92reDhokRBaTmiq+6FEhERNaXqqzYPtW9l0cst3InlxkzJpBLjY+FRvDVFRERNTBCEP29JWclA4mosN2aseiKl6PPZuFWsEzkNERFZk+Np+UjNLYGDnQwjq8Z5WguWGzMW5OmM4DYuqDAI2HqCV2+IiKjpRB2vnNvm4a6Wv9zCnVhuzNyknpVXbzZxQj8iImoiZeV6bDuZAQB4LMzyl1u4E8uNmRsX4g25VIJT1wtw8Uah2HGIiMgK/HYmC4VlFWjjao++gZa/3MKdWG7MXCsnJQYHtQbAgcVERNQ0Nh6rvCU1KcwHUitYbuFOLDcW4NGqW1NbEtOhN3A5BiIiun/p+aU4eCkHAPC4Fd6SAlhuLEJkZ3e4qOTI0pQh7nKu2HGIiMiCbT5+HYIA9A1sCd+WDmLHMQmWGwuglMswLqRy5shNVaPbiYiIGksQBOMtqcfCfEVOYzosNxai+tbUrtNZKNJWiJyGiIgs0dGrebiaWwJHOxlGd7OuuW1ux3JjIXr6uSKwlSNKy/XYcSpD7DhERGSBfkm4BgAY093L6ua2uR3LjYWQSCR4PLzyEuJ/E3hrioiIGqdYW4EdSZkAYPx9Yq1YbizIpJ5tIJNKcCw1D5eyi8SOQ0REFmTX6SyU6PTwd3NAeNsWYscxKZYbC+LuosLgjpVz3vxy7JrIaYiIyJJU35J6LMwHEon1zW1zO5YbC/NEr8pLiVHH0lGuN4ichoiILEFabgmOpNyCRPLnAyrWjOXGwgzt5I5WTnbIKdIiJvmm2HGIiMgCbKy62t+/fSt4u9qLnMb0WG4sjEImxSOhbQAA/03grSkiIqqfwSAYl++xxkUy68JyY4GqR7nvO5+N7MIykdMQEZE5i7uSi/T8Ujir5BjZ1Xrntrkdy40F6ujhjB6+rtAbBGxJ5GKaRER0d9UDiceHeEOlkImcpnmw3FioJ26b80YQuJgmERHVpikrx67TWQBs55YUwHJjscaGeEGlkOJSdhESr+WLHYeIiMzQjlOZ0FYY0N7dCT18XcWO02xYbiyUi0qB0cFeAP685EhERHS76t8Pj9vA3Da3E7XcLF26FN27d4eLiwtcXFwQERGBXbt21fue2NhYhIWFQaVSITAwEMuWLWumtOanemDxtpOZKNFxMU0iIvrTpewiHE/Lh0wqMT5laytELTc+Pj745JNPkJCQgISEBAwdOhQTJkzAmTNn6tw/JSUFo0ePxoABA5CYmIj58+fjtddeQ1RUVDMnNw99AlrCr6UDirQV2JWUJXYcIiIyIxuPVa5DOKhja7i7qERO07xELTfjxo3D6NGj0bFjR3Ts2BELFy6Ek5MTDh8+XOf+y5Ytg5+fHxYvXozOnTvjxRdfxPPPP4/PPvusmZObB6lUgifCKweIcc4bIiKqVq43GMvNE1a+SGZdzGbMjV6vx/r161FcXIyIiIg694mLi8OIESNqbBs5ciQSEhJQXl5e53u0Wi00Gk2NlzWZFOYDiQQ4knILV3OKxY5DRERm4PdzN5BTpEUrJyUiO7uLHafZiV5ukpKS4OTkBKVSiRkzZmDz5s3o0qVLnftmZWXBw8OjxjYPDw9UVFQgJyenzvcsWrQIarXa+PL1ta4G66W2x8AOlYtpVrd0IiKybT/H/7lIpkIm+q/6Zif6EQcFBeHEiRM4fPgwXnnlFUyfPh1nz5696/53jvaunuPlbqPA582bh4KCAuPr2jXru31Tfclx47Hr0Bs45w0RkS1Lzy/F/ouVaw9O7mVd/6BvKLnYAezs7NC+fXsAQHh4OI4ePYovv/wS3377ba19PT09kZVVc+BsdnY25HI53Nzc6vz6SqUSSqWy6YObkWFd3OHqoECWpgz7L97EkCDbuwRJRESV/nv0GgQBiAh0g38rR7HjiEL0Kzd3EgQBWq22zs9FRERg7969Nbbt2bMH4eHhUCgUzRHPLCnlMkzsUfmYH+e8ISKyXXqDYPw9MLm3bV61AUQuN/Pnz8eBAwdw9epVJCUl4Z133kFMTAymTJkCoPKW0rRp04z7z5gxA6mpqZgzZw7OnTuHlStXYsWKFZg7d65Yh2A2qm9N7T17A7lFdZdDIiKybvsv3ERGQRlcHRQ2s0hmXUQtNzdu3MDUqVMRFBSEyMhIHDlyBLt378bw4cMBAJmZmUhLSzPuHxAQgJ07dyImJgY9evTAggULsGTJEkyaNEmsQzAbXbxd0N1HjXK9gKjjHFhMRGSL1h+t/J35aKiPzSySWReJYGOrLmo0GqjVahQUFMDFxUXsOE1qfXwa3t6UhIBWjtj310E2NdU2EZGtyy4sQ79F+1BhELDnzYHo6OEsdqQm1Zjf32Y35obu37gQbzjayZCSU4y4K7lixyEioma08dh1VBgE9PRztbpi01gsN1bEUSnHhKr1Q6rnOCAiIutnMAjYcLR6ILGfyGnEx3JjZZ6u+kv92+ksDiwmIrIRh1NykZpbAmelHGO7e4kdR3QsN1YmuI0a3dqoodMbsOl4uthxiIioGayvulo/voc3HOxEn8JOdCw3VujpPpVXb36OT4ONjRcnIrI5ecU67D5dOcHt5F68JQWw3Fil6oHFV3KKcSTllthxiIjIhDYlpkOnN6Crtwu6+ajFjmMWWG6skJNSjvFVMxb/dCTtHnsTEZGlEgQB6+Mrf85zIPGfWG6sVPXA4t2ns3CrWCdyGiIiMoXjafm4mF0Ee4UME3p4ix3HbLDcWKluPmoEt3GpGljMGYuJiKxR9VWbMd294KKy3TUW78RyY8Weqrp68xMHFhMRWZ3CsnJsP5UJAHjKhhfJrAvLjRWb0KMNHOxkuHKzGPEcWExEZFV+PZGB0nI92rs7oadfC7HjmBWWGyvmpJQb78H+FM+BxURE1kIQBPxY9cDI5F6+XEvwDiw3Vq761tSupCzkcWAxEZFVOJ6Wj3OZGqgUUjwexltSd2K5sXLd2qjR1btyYHEUBxYTEVmFHw+nAgDGdfeG2oEDie/EcmPlJBKJ8eoNZywmIrJ8t4p1xoHEz/RtK3Ia88RyYwMm9PCGg50Ml28W4+jVPLHjEBHRA/gl4Rp0egO6tVEjxNdV7DhmieXGBjirFBgfUjWw+EiqyGmIiOh+GQyC8QGRZ/pyRuK7YbmxEdW3pnZyxmIiIot14FIOUnNL4KySY1wIZyS+G5YbG9G9esbiCgP+m3BN7DhERHQf1lUNJH4szAcOdnKR05gvlhsbIZFIMK2vP4DK/zn0Bg4sJiKyJOn5pfj93A0AwJQ+HEhcH5YbGzIuxBtqewWu55Ui9kK22HGIiKgR1senwSAAEYFuaO/uJHYcs8ZyY0Ps7WR4PMwHALAmjgOLiYgsRbnegPVHK4cU8PHve2O5sTHV/1PEXriJ1NxikdMQEVFD7DlzAzcLtWjtrMSIrh5ixzF7LDc2xr+VIwZ1bA1B+HNgGhERmbfqn9eTe/lCIeOv7nvhn5ANmhZRefXmvwnXUVauFzkNERHV51J2IeKu5EIq+XNaD6ofy40NGhzkjjau9igoLcfWkxlixyEionqsO1w5aV9kZw94u9qLnMYysNzYIJlUYhx7szYuletNERGZqRJdhXHRYw4kbjiWGxv1ZC9f2MmlSEovwIlr+WLHISKiOmw7mYHCsgq0dXPAgPatxI5jMVhubFRLRzuM7e4FAFjLgcVERGZHEATjz+ene/tBKpWInMhysNzYsKlVlzi3n8rkelNERGbm5PUCnE7XwE4uxePhvmLHsSgsNzash68rurVRQ1dhwIajXG+KiMicrK2abHVMNy+0dLQTOY1lEbXcLFq0CL169YKzszPc3d0xceJEJCcn1/uemJgYSCSSWq/z5883U2rrIZFIMLXqsXCuN0VEZD5yirTYVvU0a/X0HdRwopab2NhYzJw5E4cPH8bevXtRUVGBESNGoLj43jPnJicnIzMz0/jq0KFDMyS2PuOr1ptKzy9FTDLXmyIiMgfr49Og0xsQ4qNGqF8LseNYHFHXS9+9e3eNj1etWgV3d3ccO3YMAwcOrPe97u7ucHV1NWE626BSyPBEuA++O5CCNXGpiOzMab2JiMRUrjcY57aZ3s9f3DAWyqzG3BQUFAAAWrZsec99Q0ND4eXlhcjISERHR991P61WC41GU+NFNT3Tty0kksr1pq7mcL0pIiIx7TlzA1maMrRyssOYqqdaqXHMptwIgoA5c+agf//+CA4Ovut+Xl5eWL58OaKiorBp0yYEBQUhMjIS+/fvr3P/RYsWQa1WG1++vhxxfqe2bpXrTQHAj0f4WDgRkZhWH7oKoHKpBaVcJm4YCyURzGR62pkzZ2LHjh04ePAgfHx8GvXecePGQSKRYOvWrbU+p9VqodVqjR9rNBr4+vqioKAALi4uD5zbWuw7fwPP/5AAtb0CcfOGwsFO1DuWREQ26WyGBqOXHIBcKsHBvw+Fp1oldiSzodFooFarG/T72yyu3MyePRtbt25FdHR0o4sNAPTt2xcXL16s83NKpRIuLi41XlTboI7u8GvpgILScmxJ5HpTRERiqL5qMzLYk8XmAYhabgRBwKxZs7Bp0ybs27cPAQEB9/V1EhMT4eXF+5IPQiaVGB83/OFQCtebIiJqZnnFOmw5kQ4AeI4DiR+IqPceZs6ciZ9++gm//vornJ2dkZWVBQBQq9Wwt69c+XTevHlIT0/HmjVrAACLFy+Gv78/unbtCp1Oh3Xr1iEqKgpRUVGiHYe1eKKXL77YewEXbhThj0u56N+B65gQETWX9UevQVthQFdvF4S15ePfD0LUKzdLly5FQUEBBg8eDC8vL+Nrw4YNxn0yMzORlpZm/Fin02Hu3Lno3r07BgwYgIMHD2LHjh149NFHxTgEq+KiUuCxsMrbgqv+SBE5DRGR7ajQG7Cuah2p6f38IZFwHakHYTYDiptLYwYk2aIrN4sw9D+xkEiA6L8Ohn8rR7EjERFZvd2nszBj3TG0cFAgbl4kVAo+JXUnixtQTOYjsLUTBge1hiAAP1QNbCMiItOqHkg8ubcfi00TYLmhWp57qHJg98Zj11FYVi5yGiIi63Y2Q4O4K7mQSSV4pi/XkWoKLDdUy8AOrdCutSOKtBXYeOy62HGIiKzayqoxjg8He6KNq73IaawDyw3VIpFI8GzVY4irD12FgauFExGZxM1CLbaeqJxb7IX+9zcdCtXGckN1erSnD5xVclzNLUE0VwsnIjKJdYdTodMb0MPXFT25+neTYbmhOjkq5Zjcq3IdrlV/XBU3DBGRFSor1xvX8+NVm6bFckN3NS3CH1IJcPBSDi7cKBQ7DhGRVdl6MgM5RTp4qVV4ONhT7DhWheWG7sq3pQOGd/EAAKw8yEn9iIiaiiAIxp+r0/v5QyHjr+OmxD9NqteLAwIBAJsS05FTpL3H3kRE1BBxl3NxPqsQ9goZnurlJ3Ycq8NyQ/UKb9sCIT5q6Cr+nBqciIgeTPXj34+F+UDtoBA5jfVhuaF6SSQSvFB19WZtXCrKyvUiJyIismwpOcX4/XzlU6jPPeQvbhgrdV/l5sCBA3jmmWcQERGB9PTK5dnXrl2LgwcPNmk4Mg+jqyaWyi3WYUtiuthxiIgs2g9/pEAQgKGd3BHY2knsOFap0eUmKioKI0eOhL29PRITE6HVVo7DKCwsxD//+c8mD0jik8ukxkn9vj+YAhtba5WIqMkUlJbjl6qZ3/n4t+k0utx8/PHHWLZsGb777jsoFH/eJ+zXrx+OHz/epOHIfDzZ2xdOSjkuZRch9sJNseMQEVmkn46koUSnRydPZ/Rr5yZ2HKvV6HKTnJyMgQMH1tru4uKC/Pz8pshEZshFpcCTVZP6reBj4UREjaarMGBV1UDiFwcEQiKRiJzIejW63Hh5eeHSpUu1th88eBCBgYFNEorM07P9Kif1O3AxB+ezNGLHISKyKFtPZiC7UAsPFyXGh3iLHceqNbrcvPzyy3j99ddx5MgRSCQSZGRk4Mcff8TcuXPx6quvmiIjmQnflg4Y1c0LAPD9AV69ISJqKEEQ8N3+KwCAZ/sFwE7Oh5VNSd7YN7z11lsoKCjAkCFDUFZWhoEDB0KpVGLu3LmYNWuWKTKSGXmxfwB2nMrEryfS8dbIILi7qMSORERk9vZfzEHyjUI42snwdB9O2mdq91UdFy5ciJycHMTHx+Pw4cO4efMmFixY0NTZyAyF+rVAWNsWKNcLWBPHSf2IiBqi+qrN5N5+UNtz0j5Ta3S5ef7551FYWAgHBweEh4ejd+/ecHJyQnFxMZ5//nlTZCQz89KAyscX1x5ORbG2QuQ0RETm7UxGAQ5eyoFMKuGkfc2k0eVm9erVKC0trbW9tLQUa9asaZJQZN6Gd/FEQCtHFJSW478J18SOQ0Rk1qrHKI7p5gWfFg4ip7ENDS43Go0GBQUFEAQBhYWF0Gg0xldeXh527twJd3d3U2YlMyGTSvBS1ZIM3x9IQbneIHIiIiLzlJFfim0nMwDA+HOTTK/BA4pdXV0hkUggkUjQsWPHWp+XSCT48MMPmzQcma9He7bB53uTkZ5fip1JmZjQo43YkYiIzM4Ph66iwiAgItAN3XzUYsexGQ0uN9HR0RAEAUOHDkVUVBRatmxp/JydnR3atm0Lb28+t28rVAoZnnsoAP/+LRnLYq9gfIg3J6QiIrqNpqwcPx1JAwD8ZSCv2jSnBpebQYMGoaKiAtOmTUN4eDh8fX1NmYsswDN92uLr6Es4l6nBgYs5GNixtdiRiIjMxs9H0lCkrUAHdycM4s/HZtWoAcVyuRxRUVHQ6/WmykMWRO2gwFO9K+dr+Hb/ZZHTEBGZD22F3rhUzUsDAiGV8sp2c2r001KRkZGIiYkxQRSyRM/3D4BcKsEfl3KRdL1A7DhERGZh8/F0ZBdq4emiwsRQjklsbo2eoXjUqFGYN28eTp8+jbCwMDg6Otb4/Pjx45ssHJm/Nq72GBfijc2J6fh2/2V89XRPsSMREYlKbxCwvGrSvhcHcKkFMUgEQRAa8wap9O4nSSKRmP0tK41GA7VajYKCAri4uIgdxyqcy9Rg1JcHIJUAMXOHwM+N8zgQke3alZSJV348DrW9AofeHgpHZaOvI1AdGvP7u9F10mAw3PVl7sWGTKOzlwsGdWwNgwB8f/CK2HGIiEQjCAKWxlaOQZzez5/FRiQPdK2srKysqXKQhXt5UOVjjhuOXkNOkVbkNERE4jh0ORenrhdApZDi2X7+YsexWY0uN3q9HgsWLECbNm3g5OSEK1cq/6X+j3/8AytWrGjU11q0aBF69eoFZ2dnuLu7Y+LEiUhOTr7n+2JjYxEWFgaVSoXAwEAsW7assYdBTSwi0A0hvq7QVhiw6o8UseMQEYliaUzlVZvJvfzQ0tFO5DS2q9HlZuHChfjhhx/w6aefws7uzxPXrVs3fP/99436WrGxsZg5cyYOHz6MvXv3oqKiAiNGjEBxcfFd35OSkoLRo0djwIABSExMxPz58/Haa68hKiqqsYdCTUgikWDm4HYAgDWHUlFQWi5yIiKi5nXqej4OXsqBXCrBi1ULDJM4Gn0zcM2aNVi+fDkiIyMxY8YM4/bu3bvj/Pnzjfpau3fvrvHxqlWr4O7ujmPHjmHgwIF1vmfZsmXw8/PD4sWLAQCdO3dGQkICPvvsM0yaNKlxB0NNalhnD3T0cMKFG0VYdzgVM4e0FzsSEVGzWVY11mZ8D28ukCmyRl+5SU9PR/v2tX9pGQwGlJc/2L/WCwoq50m5fWmHO8XFxWHEiBE1to0cORIJCQl1fn+tVltjkU+NRvNAGenupFIJXh1c+XdjxcEUlOo4wJyIbMOVm0XYdToLADBjUDuR01Cjy03Xrl1x4MCBWtt/+eUXhIaG3ncQQRAwZ84c9O/fH8HBwXfdLysrCx4eHjW2eXh4oKKiAjk5ObX2X7RoEdRqtfHFZSNMa2x3L/i2tMetYh3WH00TOw4RUbNYvv8KBKH6Craz2HFsXqNvS73//vuYOnUq0tPTYTAYsGnTJiQnJ2PNmjXYvn37fQeZNWsWTp06hYMHD95z3zsXaKyeqqeuhRvnzZuHOXPmGD/WaDQsOCYkl0kxY1A7vLP5NJbvv4IpfdpyAisismoZ+aWIOn4dAPDKYC6QaQ4a/Vtn3Lhx2LBhA3bu3AmJRIL33nsP586dw7Zt2zB8+PD7CjF79mxs3boV0dHR8PHxqXdfT09PZGVl1diWnZ0NuVwONze3WvsrlUq4uLjUeJFpTerpA3dnJTILyrAlMV3sOEREJrV8/xWU6wVEBLohrO3dh1VQ82lwuXn33Xexb98+lJWVYeTIkYiNjUVRURFKSkpw8ODBWuNgGkIQBMyaNQubNm3Cvn37EBBw79HlERER2Lt3b41te/bsQXh4OBQKRaMzUNNTKWR4aUDlv16Wxl6G3tCoSbCJiCxGdmEZfo6vvAU/eygfojAXDS43P//8M4YNGwZXV1cMGjQIH374IQ4cOACdTnff33zmzJlYt24dfvrpJzg7OyMrKwtZWVkoLS017jNv3jxMmzbN+PGMGTOQmpqKOXPm4Ny5c1i5ciVWrFiBuXPn3ncOanpP9/GD2l6BlJxi7DqdKXYcIiKTWHEgBdoKA3r6uSKiXe27BySOBpeby5cv49q1a/juu+/Qvn17rFmzBoMGDUKLFi0wbNgwLFy4EIcOHWrUN1+6dCkKCgowePBgeHl5GV8bNmww7pOZmYm0tD8HpgYEBGDnzp2IiYlBjx49sGDBAixZsoSPgZsZR6Uczz3kDwD4OvoyGrmEGRGR2csr1mHt4VQAwOyhHeoc90niaPTCmbe7du0aoqOjERMTg6ioKBQXF6OioqIp8zU5LpzZfPJLdOj3yT6U6PRY+Ww4hnbyuPebiIgsxOd7krFk3yV09XbB9tn9WW5MzKQLZ1a7fPky9uzZg99++w2//fYb9Ho9hgwZcr9fjqyQq4MdpvZtCwBY8vslXr0hIquhKSvHqkNXAVSOtWGxMS8NLjcpKSlYuXIlpk6dCl9fX4SGhmLjxo3o1q0bNm7ciPz8/FoDfYleHBAIlUKKE9fyceBi7XmIiIgs0dq4VBSWVaCDuxNGdPEUOw7docHz3LRr1w5+fn549dVX8dprr6Fnz56QyWSmzEZWoLWzElP6tMWKgyn48veLGNChFf+FQ0QWrURXge8PVC4aPWtoe0il/Jlmbhp85ebxxx+HVqvFokWLsGDBAixevBjHjx/nrQa6p5cHBsJOLsWx1Dwcupwrdhwiogfy05E05JWUw9/NAWO6eYkdh+rQ4HKzYcMGZGZmIi4uDqNGjUJ8fDxGjx6NFi1aYOzYsfj3v/+No0ePmjIrWSh3FxWe7u0HAPjy94sipyEiun9l5Xp8u7/yqs2rg9tDLuMM7Oao0WelU6dOeOWVV7BhwwZkZWXh0KFD6NGjBz7++GNERESYIiNZgZcHBcJOJkV8yi0cvsKrN0RkmdbHp+FmoRZtXO0xMbSN2HHoLhq9thQA3LhxAzExMYiJiUF0dDQuXLgApVKJAQMGNHU+shJeans82csXaw+nYsnvF9E3kJNdEZFlKSvX45uYywCAV4e047p5ZqzB5eaXX34xzmmTnJwMuVyO3r1744knnsCQIUPQr18/KJVKU2YlCzdjcDusP5qGQ5dzcfTqLfTy5xosRGQ5fo5PQ3bVVZvHw7gAszlrcLmZMmUKwsPD8cgjj2DIkCF46KGHYG9vb8psZGXauNrjsTBf/ByfhiW/X8TaF/qIHYmIqEFuv2ozc0h7XrUxcw0uN3l5eXB0dKyx7Y8//kB4eDiv2FCDvTq4HX5JuIYDF3NwLDUPYW1biB2JiOiefjry51ibx8J8xI5D99Dg6nlnsQGAUaNGIT09vUkDkXXzbemAR3tWDsLjk1NEZAnKyvVYGsurNpbkgc4Q57ih+zFrSAfIpBLsv3ATCVdviR2HiKheP/KqjcVh/aRm5+fmgMerfkB8vveCyGmIiO6urFyPZVVXbWYN5VUbS9Hos/Tss89i//79AIBvv/0WHh5c6Zkab9bQ9lDIJDh0ORdxnLWYiMzUusOpuFmohU8Le0zqyas2lqLR5aawsBAjRoxAhw4dkJKSgvz8fBPEImvn08IBk3tVzlr8xd4LvMVJRGanVKfHstiqNaQ41saiNPpMRUVFIT09HbNmzcLGjRvh7++PUaNGYePGjSgvLzdFRrJS1QPz4q/ewsFLXDGciMzLj0dSkVNUddWGY20syn3VUDc3N7z++utITExEfHw82rdvj6lTp8Lb2xtvvvkmLl7kUzB0b55qFab0qbx68589vHpDROajSFthnNdm9tD2UHANKYvyQGcrMzMTe/bswZ49eyCTyTB69GicOXMGXbp0wRdffNFUGcmKvTK4HVQKKU5cy0d0crbYcYiIAACrDqbgVrEOAa0cOdbGAjW63JSXlyMqKgpjx45F27Zt8csvv+DNN99EZmYmVq9ejT179mDt2rX46KOPTJGXrIy7swrTI/wBVD45xas3RCS2gpJyLD9QOdbmzeEdufK3BWr0wpleXl4wGAx46qmnEB8fjx49etTaZ+TIkXB1dW2CeGQLXh7UDusOp+J0ugZ7zt7AyK6eYkciIhv27f7LKCyrQCdPZ4zt5iV2HLoPja6jX3zxBTIyMvD111/XWWwAoEWLFkhJSXnQbGQjWjra4dmH/AFUPjllMPDqDRGJI7uwDKv+uAoA+OuIIEilEnED0X1pdLmZOnUqVCqVKbKQDXtpQCCcVXKczyrEtlMZYschIhv1TfRllJbrEeLrimGd3cWOQ/eJNxLJLLg62OHlgYEAKp+c0lUYRE5ERLYmPb8UPx1JAwD8bUQQJBJetbFULDdkNp57KACtnJRIu1WCDQnXxI5DRDbm/36/CJ3egL6BLfFQezex49ADYLkhs+GolOO1yPYAgCW/X0SpTi9yIiKyFSk5xfjl2HUAwN9G8qqNpWO5IbMyuZcffFva42ahFqsOcVA6ETWPxf+7AL1BwNBO7ghr21LsOPSAWG7IrNjJpZgzvCMAYFnMZRSUcEkPIjKt0+kF+PVE5YMM1T9/yLKx3JDZGR/SBp08naEpq8Cy/ZfFjkNEVu7T35IBAONDvBHcRi1yGmoKLDdkdmRSCeaOCAIArPojBdmaMpETEZG1+uNSDvZfuAmF7M+fO2T5WG7ILEV2dkdY2xYoKzdgyT4uxEpETc9gEPDJrvMAgCl92sLPzUHkRNRUWG7ILEkkErw1svJfUevjr+FqTrHIiYjI2uxIykRSegGclHLMHtpe7DjUhEQtN/v378e4cePg7e0NiUSCLVu21Lt/TEwMJBJJrdf58+ebJzA1qz6Bbhgc1BoVBgH/rronTkTUFHQVBny2p/Lnyl8GBsLNSSlyImpKopab4uJihISE4KuvvmrU+5KTk5GZmWl8dejQwUQJSWxvj+oEiaTyX1jH0/LEjkNEVmL90TSk5paglZMSL/QPEDsONbFGrwrelEaNGoVRo0Y1+n3u7u5cddxGdPJ0wWM9ffDLsev4545z+GVGBCfXIqIHUqStwJLfK8fyvTGsAxyVov4qJBOwyDE3oaGh8PLyQmRkJKKjo+vdV6vVQqPR1HiRZfnriCCoFFIkpObhtzM3xI5DRBbuu/1XkFOkQ0ArRzzZy1fsOGQCFlVuvLy8sHz5ckRFRWHTpk0ICgpCZGQk9u/ff9f3LFq0CGq12vjy9eVfZEvjqVbhxf6Vi2p+uvs8yvVcVJOI7s/NQi2+O3AFQOUyCwqZRf0apAaSCIIgiB0CqHw6ZvPmzZg4cWKj3jdu3DhIJBJs3bq1zs9rtVpotVrjxxqNBr6+vigoKICLi8uDRKZmVFhWjsH/jkFusQ4LJnTF1Ah/sSMRkQWatykJP8enIcTXFVte7cfb3BZEo9FArVY36Pe3xVfWvn374uLFu8+DolQq4eLiUuNFlsdZpcAbwyoHji/+30UUlnFZBiJqnOSsQmw4mgYAeHdMZxYbK2bx5SYxMRFeXl5ix6BmMLm3HwJbOSK3WIdvY6+IHYeILMzCnedgEIDR3TzRy5+LY1ozUYeIFxUV4dKlS8aPU1JScOLECbRs2RJ+fn6YN28e0tPTsWbNGgDA4sWL4e/vj65du0Kn02HdunWIiopCVFSUWIdAzUghk+Lvozrh5bXH8P3BK3imb1t4qlVixyIiCxCTnI39F27CTibF3x/uJHYcMjFRy01CQgKGDBli/HjOnDkAgOnTp+OHH35AZmYm0tLSjJ/X6XSYO3cu0tPTYW9vj65du2LHjh0YPXp0s2cncYzo4oFe/i1w9GoePtuTjM8eDxE7EhGZuQq9AQt3nAMATO/XFm3dHEVORKZmNgOKm0tjBiSReUpMy8Mj3xyCRAJsndkf3Xy4ii8R3d26w6l4d8tptHBQIOZvQ6C2V4gdie6DTQ0oJtsT6tcCj4S2gSAAH247Axvr50TUCIVl5fhi7wUAwBvDOrLY2AiWG7JIbz0cBHuFDAmpediRlCl2HCIyU9/EXEZusQ6BrR3xdB8/seNQM2G5IYvkpbbHjEHtAACLdp5HWble5EREZG6u3SrBioMpAID5ozpzwj4bwjNNFusvAwPhrVYhPb8U3+3no+FEVNMnu89DV2FAv3ZuiOzsLnYcakYsN2Sx7O1k+Puoykc6v4m5jBuaMpETEZG5iLucix2nMiGVAO+O6cIJ+2wMyw1ZtPEh3ghr2wKl5Xr8a/d5seMQkRmo0Bvw4bYzAICn+/ihizefjLU1LDdk0SQSCd4b2wUAsOl4Ok5cyxc3EBGJ7uf4NJzPKoTaXoG/Dg8SOw6JgOWGLF6Iryse7dkGAPARHw0nsml5xTp8tqfy0e+/juiIFo52IiciMbDckFX4+8Od4GAnw/G0fGw6ni52HCISyed7L6CgtBydPJ3xdG8++m2rWG7IKni4qDB7aOWq4Yt2nYeGq4YT2ZyzGRr8eCQVAPD+uK6Q89Fvm8UzT1bjhf4BCGztiJwirXFGUiKyDYIg4INtZ2AQgDHdvBDRzk3sSCQilhuyGnZyKT4Y1xUAsCYuFeezNCInIqLmsv1UJuJTbkGlkGLeaK76betYbsiqDOzYGg939YTeIOC9LRxcTGQLirUV+OfOylW/XxnUHj4tHERORGJjuSGr849xXaBSSBF/9Ra2nswQOw4RmdiS3y8is6AMPi3s8fKgQLHjkBlguSGr08bVHrOGtAcALNxxDoUcXExktZKzCo3rR304vitUCpnIicgcsNyQVXppYCD83RyQXajFkt8vih2HiExAEAT8Y8tpVBgEjOjigcjOHmJHIjPBckNWSSmX4f2qwcWr/riKCzcKRU5ERE1t0/F0xF+9BXuFDO+N6yJ2HDIjLDdktYZ0csewzh6oMAh4Z3MSDAYOLiayFgUl5cZBxK9FduAgYqqB5Yas2gfju8BeIcPRq3n45dg1seMQURP5957zyC3Wob27E17oHyB2HDIzLDdk1XxaOGDO8I4AgH/uPI+cIq3IiYjoQZ28lo8fj6QBABZMCIadnL/KqCb+jSCr99xD/ujs5YKC0nL8c8c5seMQ0QPQGwS8u+U0BAF4NLQNZyKmOrHckNWTy6T45yPBkEiATYnpOHQpR+xIRHSf1sRdRVJ6AZxVcswb3VnsOGSmWG7IJoT6tcAzfdoCAN7dchpl5XqRExFRY6Xnl+LfvyUDAP7+cCe0dlaKnIjMFcsN2Yy/PRyE1s5KXMkpxtKYy2LHIaJGqJ7TpkSnRy//Fni6t5/YkciMsdyQzXBRKfB+1VwYS2Mu4/LNIpETEVFDbT+ViX3ns2Enk2LRo90glUrEjkRmjOWGbMqYbl4YHNQaOr0B8zdx7hsiS5BfosOH284AAGYOaY/27s4iJyJzx3JDNkUikWDBhGDYK2Q4knILP8WniR2JiO5h4Y5zyCnSoYO7E14Z3E7sOGQBWG7I5vi2dMDfRgYBAD7ZdR4Z+aUiJyKiuzl0KQe/HLsOiQT4ZFI3zmlDDcK/JWSTpvfzR08/VxRpKzB/cxIEgbeniMxNWbke8zYnAQCe6dMWYW1bipyILAXLDdkkmVSCTx/rDjuZFDHJN7E5MV3sSER0h8X/u4jU3BJ4uqjw1sNBYschC8JyQzarvbszXh/WAQDw0fazuFnIpRmIzEViWh6W76+csmHBxGA4qxQiJyJLImq52b9/P8aNGwdvb29IJBJs2bLlnu+JjY1FWFgYVCoVAgMDsWzZMtMHJav1l4GB6OLlgvyScnyw9YzYcYgIlbej5v5yEgYBmNjDG8O7eIgdiSyMqOWmuLgYISEh+Oqrrxq0f0pKCkaPHo0BAwYgMTER8+fPx2uvvYaoqCgTJyVrpZBJ8elj3SGTSrAjKRO7T2eJHYnI5i3+30VcvlmM1s5KfDC+q9hxyALJxfzmo0aNwqhRoxq8/7Jly+Dn54fFixcDADp37oyEhAR89tlnmDRpkolSkrULbqPGywMD8U3MZby75TT6BLREC0c7sWMR2aTbb0f985FucHXg/4vUeBY15iYuLg4jRoyosW3kyJFISEhAeXl5ne/RarXQaDQ1XkR3ei2yA9q7OyGnSIt//Hpa7DhENom3o6ipWFS5ycrKgodHzb/sHh4eqKioQE5O3Ss9L1q0CGq12vjy9fVtjqhkYVQKGT5/IgQyqQTbT2Vi28kMsSMR2RzejqKmYlHlBqicYfZ21fOT3Lm92rx581BQUGB8Xbt2zeQZyTJ193HFzCHtAQD/+PU0sjVlIicish28HUVNyaLKjaenJ7Kyag74zM7Ohlwuh5ubW53vUSqVcHFxqfEiupvZQ9sjuE3l01N/jzrFyf2ImkGpjrejqGlZVLmJiIjA3r17a2zbs2cPwsPDoVBwDgR6cAqZFJ8/0QN2cimik29iw1Fe6SMytU92ncPlm8Vw5+0oaiKilpuioiKcOHECJ06cAFD5qPeJEyeQlla5mOG8efMwbdo04/4zZsxAamoq5syZg3PnzmHlypVYsWIF5s6dK0Z8slIdPZwxd0RHAMCC7Wdx7VaJyImIrFfshZtYHZcKAPj34yG8HUVNQtRyk5CQgNDQUISGhgIA5syZg9DQULz33nsAgMzMTGPRAYCAgADs3LkTMTEx6NGjBxYsWIAlS5bwMXBqci/0D0Qv/xYorr5cbuDtKaKmdqtYh7m/nAQAPNvPH4M6thY5EVkLiWBjgwo0Gg3UajUKCgo4/obqlZpbjFFfHkCJTo/5ozvhLwPbiR2JyGoIgoBX1h3H7jNZaO/uhO2z+0OlkIkdi8xYY35/W9SYG6Lm1NbNEe+O6QIA+PdvyTidXiByIiLrsfHYdew+kwW5VILFT/ZgsaEmxXJDVI+nevtiZFcPlOsFvPZzIkp0FWJHIrJ4abklxrXc3hzeEcFt1CInImvDckNUD4lEgk8e7Q5PFxWu5BRjwfazYkcismh6g4A5/z2BYp0evfxbYMYg3u6lpsdyQ3QPLRzt8PmTIZBIgJ/jr2FXUqbYkYgs1v/tu4iE1Dw4KeX4/IkekEnrnoCV6EGw3BA1QL92rYz/wnx7UxIy8ktFTkRkeQ5fycWS3y8CABZM7Arflg4iJyJrxXJD1EBzhndEiI8aBaXlmPPfE9Dz8XCiBrtVrMPr6xNhEIDHwnzwSKiP2JHIirHcEDWQQibFl5ND4WAnw+Ert7A05pLYkYgsgiAImPvLSdzQaBHY2hEfchZiMjGWG6JG8G/15w/mz/dewOEruSInIjJ/Kw6mYN/5bNjJpfjqqZ5wVMrFjkRWjuWGqJEeC/PBoz3bwCAAr/2ciJuFWrEjEZmtU9fz8a/d5wEA/xjTGV28OXkqmR7LDVEjSSQSfDwxGB3cnZBdqMWbGzj+hqguhWXlmPVTIsr1Ah7u6oln+rYVOxLZCJYbovvgYCfHN1N6wl4hw8FLOfi/fRfFjkRkVgRBwNtRSUi7VYI2rvb416TukEj42Dc1D5YbovvUwcMZCx8JBgB8+ftF/HEpR+REROZjxcEU7EjKhEImwZKnQqF2UIgdiWwIyw3RA3i0pw8m9/KFIACvr09EtqZM7EhEojtyJReLdlWOs3l3TBeEtW0hciKyNSw3RA/og/Fd0cnTGTlFOsz6OREVeoPYkYhEk60pw6yfE6E3CBgf4o1pERxnQ82P5YboAakUMnwzpScc7WSIT7ll/Bcrka0p1xsw66fKJwg7ejjhk0ndOM6GRMFyQ9QEAls74T9P9ABQOdZgc+J1cQMRieBfu84j/uotOCnlWPZMGBzsOJ8NiYPlhqiJPBzsidlD2wMA3o5Kwun0ApETETWfHacy8f3BFADAZ493R2BrJ5ETkS1juSFqQm8M64ghQa2hrTDg5bXHcKtYJ3YkIpM7l6nB3zaeBAC8PDAQDwd7iZyIbB3LDVETkkklWDw5FP5uDkjPL8Wsn45zgDFZtdwiLV5cnYASnR792rnhbyODxI5ExHJD1NTU9gosnxYOBzsZDl3ONU49T2RtdBUGvPLjcaTnl6KtmwO+mdITchl/rZD4+LeQyAQ6ejjjP4+HAAC+O5CCTcc5wJisiyAI+GDbGcSnVA4g/n5aOFwd7MSORQSA5YbIZEZ188KsIX8OMD569ZbIiYiazrrDqfjpSBokEuDLyT3QwcNZ7EhERiw3RCY0Z3hHjAr2hE5fOcA4LbdE7EhED+zQpRx8sO0sAOCtkZ0Q2dlD5ERENbHcEJmQVCrB50/0QLc2atwq1uH51UdRUFoudiyi+3Y1pxiv/nQceoOAiT28MWNQoNiRiGphuSEyMXs7Gb6fHg4vtQqXsosw66fjKOcTVGSBbhXr8OyqeOSXlCPER41PuNI3mSmWG6Jm4OGiwvfTK5+gOnAxBx9sPQNBEMSORdRgZeV6vLj6KK7mlqCNqz2+mx4OlUImdiyiOrHcEDWTrt5qfDk5FBIJ8OORNKyoms2VyNwZDALe3HACx9Py4aKSY/XzveDurBI7FtFdsdwQNaPhXTwwf1RnAMDHO85h68kMkRMR3ds/d57DrtNZsJNJsXxaONq788koMm8sN0TN7MUBAXi2nz8A4K//PYE/LuWIG4ioHqsPXTWuGfXvx7ujb6CbyImI7o3lhqiZSSQSvDe2C8Z090K5XsDLa49xkU0yS7+dycKH284AAP42MggTerQRORFRw7DcEImg8hHxEPQNbIkibQWeXXWUc+CQWTl0OQezf06EQQAm9/LFq4PbiR2JqMFELzfffPMNAgICoFKpEBYWhgMHDtx135iYGEgkklqv8+e5dg9ZHqVchuXTwtHJ0xk5RVpMW3kEOUVasWMR4dT1fLy0OgG6CgOGd/HAxxOD+cg3WRRRy82GDRvwxhtv4J133kFiYiIGDBiAUaNGIS0trd73JScnIzMz0/jq0KFDMyUmalouKgVWP98bbVztcTW3BM//cBSFZZzkj8RzKbsQ01fGo1inR0SgG/7vqVAuhkkWR9S/sZ9//jleeOEFvPjii+jcuTMWL14MX19fLF26tN73ubu7w9PT0/iSyTjXAlkuDxcV1rzQGy0cFDh1vQAv/JCAEl2F2LHIBl3PK8Ez38cjr2qSPs5lQ5ZKtHKj0+lw7NgxjBgxosb2ESNG4NChQ/W+NzQ0FF5eXoiMjER0dHS9+2q1Wmg0mhovInPTrrUT1r7QB84qOeKv3sJf1hxDWble7FhkQ24WajF1RTyyNGVo7+6EVc/1hpNSLnYsovsiWrnJycmBXq+Hh0fNBdc8PDyQlZVV53u8vLywfPlyREVFYdOmTQgKCkJkZCT2799/1++zaNEiqNVq48vX17dJj4OoqQS3UeOH53rDwU6Gg5dy8OqPx6Gr4DINZHp5xTpMWxmPlJxitHG1x9oXeqOlo53YsYjum0QQaQ74jIwMtGnTBocOHUJERIRx+8KFC7F27doGDxIeN24cJBIJtm7dWufntVottNo/B2lqNBr4+vqioKAALi4uD3YQRCYQdzkXz66Kh7bCgNHdPLFkMsc8kOnkFesw5fsjOJupQSsnJX6ZEYGAVo5ixyKqRaPRQK1WN+j3t2g/MVu1agWZTFbrKk12dnatqzn16du3Ly5evHjXzyuVSri4uNR4EZmziHZuWD4tHHYyKXYmZeFvG09Bb+A6VNT08kt0eGZFdbGxw88v9WGxIasgWrmxs7NDWFgY9u7dW2P73r170a9fvwZ/ncTERHh5eTV1PCJRDerYGl9P6Qm5VILNien42y8nUcGVxKkJVRebMxnVxaYvOnhwWQWyDqKOFpszZw6mTp2K8PBwREREYPny5UhLS8OMGTMAAPPmzUN6ejrWrFkDAFi8eDH8/f3RtWtX6HQ6rFu3DlFRUYiKihLzMIhMYngXD3w5ORSvrU/EpsR06PQGfPFkDyh4i4oeUEFJOaauiMfpdA3cHO3wE4sNWRlRy82TTz6J3NxcfPTRR8jMzERwcDB27tyJtm3bAgAyMzNrzHmj0+kwd+5cpKenw97eHl27dsWOHTswevRosQ6ByKTGdPeCTCrB7J+PY/upTOgqDPi/p0OhlPPxXLo/+SWVg4eT0guMxaYjiw1ZGdEGFIulMQOSiMzFvvM3MGNd5dNTQ4JaY+kzYZx/hBotW1OGqSvikXyjEC0dK29FBXmy2JBlsIgBxUTUcEM7eWDF9HCoFFJEJ9/Ei6sTUKrjPDjUcNduleCxZXFIvlEId2cl1v+FxYasF8sNkYUY0KF1jXlwpq08goISLtVA93bhRiEmLT2EtFsl8GvpgI0z+vFWFFk1lhsiC9I30A1rX+gNZ5UcR6/m4fFvDyEjv1TsWGTGTl7LxxPfxiG7UIuOHk74ZUYE/NwcxI5FZFIsN0QWJqxtS/wyIwIeLkpcuFGESUsP4eKNQrFjkRn641IOnv7uMPJLyhHi64oNf4mAh4tK7FhEJsdyQ2SBOnm6IOqVfmjX2hGZBWV4bFkcEq7eEjsWmZGNx64bV/fu184NP77YBy24pALZCJYbIgvl06Jy7ERPP1cUlJZjyvdH8NuZutdlI9shCAI+35OMub+cRIVBwNjuXlj5bC8ugkk2heWGyIK1cLTDjy/2RWQnd2grDJix7hiW778MG5vhgapoK/R4c8MJLNl3CQDw6uB2WDI5lNMGkM1huSGycPZ2Mnw7NQxP9faDIAD/3Hkec385BW0FHxW3JfklOkxdEY8tJzIgk0rwyaPd8NbDnSCVSsSORtTsWG6IrIBcJsU/HwnG++O6QCoBoo5fx9PfHcHNQq3Y0agZXLxRiEe+OYT4lFtwUsqx6tlemNzbT+xYRKJhuSGyEhKJBM89FIAfnqt8VPxYah4mfv0HzmZoxI5GJrQzKRMTvv4DKTnF8FarsPGVCAzs2FrsWESiYrkhsjIDO7bGlpkPIaCVI9LzSzFp6SFsPZkhdixqYnqDgE92ncerPx5HiU6PiEA3bJvdH508uawMEcsNkRVq19oJW159CP3bt0JpuR6v/ZyId7ckcRyOlcgr1uHZVfFYFnsZAPDSgACsfaE33JyUIicjMg8sN0RWSu2gwA/P9cKsIe0BAOsOp+GxpXFIyy0RORk9iBPX8jHuq4M4cDEH9goZljwVinfGdIFcxh/nRNX4fwORFZPLpJg7MgirnuuFFg4KJKUXYMz/HeB8OBbIYBDwTcwlPLb0EK7nlcKvpQM2vdoP40O8xY5GZHZYbohswJAgd+x4bQB6+rmisKwCL689hg+2nkFZOW9TWYKsgjI8s+IIPt2djAqDgDHdvbBtdn909uL4GqK6SAQbm+1Lo9FArVajoKAALi78wUC2pVxvwL92ncf3B1MAAO1aO+KLJ3ugu4+ruMHorvaevYG3Np5EXkk57BUyfDi+Kx4P94FEwvlryLY05vc3yw2RDYpOzsbfN55CdqEWMqkEs4e2x8wh7aHguA2zoSkrx6Kd5/Bz/DUAQFdvFyx5KhTtWjuJnIxIHCw39WC5IaqUV6zDP349je2nMgEA3X3U+PyJELR3dxY5Gf1+7gbe2XwaWZoyAMCL/QPwt4eDoJRzGQWyXSw39WC5Iapp68kM/GPLaRSUlsNOLsWrg9thxqB2XI9IBLeKdfhw2xn8eqJyXiJ/Nwd8Mqk7+ga6iZyMSHwsN/VguSGqLaugDG9vOoWY5JsAgIBWjlgwIRj9O7QSOZltEAQBW09m4KNtZ5FbrINUArw4IBBvDusIezuWTCKA5aZeLDdEdRMEATuTsvDhtjPIrlqTakIPb7wzpjPcnVUip7NeZzIK8OG2s4hPuQUACPJwxqePdUeIr6u4wYjMDMtNPVhuiOpXWFaO/+y5gDVxV2EQAGeVHLOHtse0CH/eqmpCt4p1+GxPMtbHp8EgACqFFK8Obo8Zg9rBTs6B3UR3YrmpB8sNUcOcup6PdzafRlJ6AQCgjas95o7siAkhbSCV8jHk+6Wt0OOnI2n4Yu8FaMoqAABju3th3ujOaONqL3I6IvPFclMPlhuihtMbBGw6fh3/2XPB+OROV28XzBvVmeNxGqlcb0DUsev4v32XkJ5fCgDo4uWCD8Z3Re+AliKnIzJ/LDf1YLkharyycj1W/pGCpdGXUaitvNoQEeiGmUPa46H2bpxQrh56g4Atien48veLSLtVua6Xu7MSrw/rgMm9/CDjVTCiBmG5qQfLDdH9u1Wsw//tu4h1h1NRrq/80RHio8arQ9pjeGcP3q66jbZCj19PZGBZ7GVcuVkMAGjlZIcZg9rhmb5tOX6JqJFYburBckP04NLzS/Hd/itYfzQNZeUGAEAHdye8PKgdxnb3sulf3DlFWqw7nIp1h1ORU6QDALRwUODlQe0wLaItHOzkIickskwsN/VguSFqOjlFWqz6IwVrDqUab1e5OijwWE8fPN3HD4E2tFTAmYwCrD50FVtOZEBXUVn4vNQqTO/njyl9/OCsUoickMiysdzUg+WGqOlpysqx7nAqfjycZhwsCwD92rnh6T5+GNbZwyqv5tws1OLXE+nYeOw6zmcVGrf38HXFC/0D8HCwJ9frImoiLDf1YLkhMh29QUDshWz8dCQN+85nw1D108XRToZhXTwwupsXBnVsbdFFp7CsHDHJN7Hp+HXsv5gDfdVB2smkGN7VA88/FICwti1ETklkfVhu6sFyQ9Q80vNLsSE+DVHH02tczXFSyhHZ2R3DOnugXzs3uDkpRUzZMGm5Jfj9/A38fi4bR1JyjYOpASDUzxWTevpgbHcvuDrYiZiSyLpZVLn55ptv8O9//xuZmZno2rUrFi9ejAEDBtx1/9jYWMyZMwdnzpyBt7c33nrrLcyYMaPB34/lhqh5CYKAE9fyseNUJnYmZSKjoKzG5zt7uaB/ezc81L4Vevm3hKNS/AG36fmlSLh6C8dS8xB3ORcXs4tqfD6wlSNGdfPEoz190M6GxhURicliys2GDRswdepUfPPNN3jooYfw7bff4vvvv8fZs2fh5+dXa/+UlBQEBwfjpZdewssvv4w//vgDr776Kn7++WdMmjSpQd+T5YZIPAaDgBPX87ErKRMHL+XiXKamxuclEqBdayd09XZBsLcaXdu4oKuXGmoH0wzG1RsEXM8rwaXsIlzKLsKp9AIcT81D5h0FTCaVoJd/C0R28kBkZ3ebGihNZC4sptz06dMHPXv2xNKlS43bOnfujIkTJ2LRokW19v/73/+OrVu34ty5c8ZtM2bMwMmTJxEXF9eg78lyQ2Q+coq0OHQ5F39czMHBSzk1bl/dzkUlR5sWDvBpYQ+fFvZo42qPFg52cFLJ4aSsfDkq5VDKpSjXG6A3CCjXC9AbBGgr9Mgp0iG3WIucQh1yirS4WajF1dxiXMkpNj7ZdDuZVIKu3i4Ia9sC4W1bon/7ViYrWETUMI35/S3a9V+dTodjx47h7bffrrF9xIgROHToUJ3viYuLw4gRI2psGzlyJFasWIHy8nIoFLV/+Gi1Wmi1WuPHGo2m1j5EJI5WTkqMD/HG+BBvAEB2YRnOZGhwJr0AZzI0OJ1RgGu3SqEpq4AmU1PrSk9TsJNLEdjKEe3dndDJ0xk927ZAD19XzkdDZMFE+783JycHer0eHh4eNbZ7eHggKyurzvdkZWXVuX9FRQVycnLg5eVV6z2LFi3Chx9+2HTBichk3J1VcA9SYUiQu3FbsbYC6fmlSM8rxfW8ElzPK0V6fikKSstRpK1AsbYCRWUVKNJWoFwvQC6TQCGTQiaVQCGVwE4uRUtHO7g5KdHKSYlWTnZo5aSEX0sHtGvthDYt7LkEApGVEf2fJneuSSMIQr3r1NS1f13bq82bNw9z5swxfqzRaODr63u/cYmomTkq5ejo4YyOHs5iRyEiCyFauWnVqhVkMlmtqzTZ2dm1rs5U8/T0rHN/uVwONze3Ot+jVCqhVJr/o6ZERETUNESbOtPOzg5hYWHYu3dvje179+5Fv3796nxPRERErf337NmD8PDwOsfbEBERke0RdV7wOXPm4Pvvv8fKlStx7tw5vPnmm0hLSzPOWzNv3jxMmzbNuP+MGTOQmpqKOXPm4Ny5c1i5ciVWrFiBuXPninUIREREZGZEHXPz5JNPIjc3Fx999BEyMzMRHByMnTt3om3btgCAzMxMpKWlGfcPCAjAzp078eabb+Lrr7+Gt7c3lixZ0uA5boiIiMj6iT5DcXPjPDdERESWpzG/v7lcLREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVUZdfEEP1hMwajUbkJERERNRQ1b+3G7Kwgs2Vm8LCQgCAr6+vyEmIiIiosQoLC6FWq+vdx+bWljIYDMjIyICzszMkEkmTfm2NRgNfX19cu3bNKtetsvbjA6z/GHl8ls/aj5HHZ/lMdYyCIKCwsBDe3t6QSusfVWNzV26kUil8fHxM+j1cXFys9i8tYP3HB1j/MfL4LJ+1HyOPz/KZ4hjvdcWmGgcUExERkVVhuSEiIiKrwnLThJRKJd5//30olUqxo5iEtR8fYP3HyOOzfNZ+jDw+y2cOx2hzA4qJiIjIuvHKDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNw8gKtXr+KFF15AQEAA7O3t0a5dO7z//vvQ6XT1vk8QBHzwwQfw9vaGvb09Bg8ejDNnzjRT6sZZuHAh+vXrBwcHB7i6ujboPc8++ywkEkmNV9++fU0b9D7dz/FZ0vkDgLy8PEydOhVqtRpqtRpTp05Ffn5+ve8x53P4zTffICAgACqVCmFhYThw4EC9+8fGxiIsLAwqlQqBgYFYtmxZMyW9f405xpiYmFrnSiKR4Pz5882YuOH279+PcePGwdvbGxKJBFu2bLnneyzpHDb2+Czt/C1atAi9evWCs7Mz3N3dMXHiRCQnJ9/zfc19DlluHsD58+dhMBjw7bff4syZM/jiiy+wbNkyzJ8/v973ffrpp/j888/x1Vdf4ejRo/D09MTw4cON616ZE51Oh8cffxyvvPJKo9738MMPIzMz0/jauXOniRI+mPs5Pks6fwDw9NNP48SJE9i9ezd2796NEydOYOrUqfd8nzmeww0bNuCNN97AO++8g8TERAwYMACjRo1CWlpanfunpKRg9OjRGDBgABITEzF//ny89tpriIqKaubkDdfYY6yWnJxc43x16NChmRI3TnFxMUJCQvDVV181aH9LO4eNPb5qlnL+YmNjMXPmTBw+fBh79+5FRUUFRowYgeLi4ru+R5RzKFCT+vTTT4WAgIC7ft5gMAienp7CJ598YtxWVlYmqNVqYdmyZc0R8b6sWrVKUKvVDdp3+vTpwoQJE0yap6k19Pgs7fydPXtWACAcPnzYuC0uLk4AIJw/f/6u7zPXc9i7d29hxowZNbZ16tRJePvtt+vc/6233hI6depUY9vLL78s9O3b12QZH1RjjzE6OloAIOTl5TVDuqYFQNi8eXO9+1jiOazWkOOz5PMnCIKQnZ0tABBiY2Pvuo8Y55BXbppYQUEBWrZsedfPp6SkICsrCyNGjDBuUyqVGDRoEA4dOtQcEZtFTEwM3N3d0bFjR7z00kvIzs4WO1KTsLTzFxcXB7VajT59+hi39e3bF2q1+p55ze0c6nQ6HDt2rMafPQCMGDHirscSFxdXa/+RI0ciISEB5eXlJst6v+7nGKuFhobCy8sLkZGRiI6ONmXMZmVp5/B+Wer5KygoAIB6f++JcQ5ZbprQ5cuX8X//93+YMWPGXffJysoCAHh4eNTY7uHhYfycpRs1ahR+/PFH7Nu3D//5z39w9OhRDB06FFqtVuxoD8zSzl9WVhbc3d1rbXd3d683rzmew5ycHOj1+kb92WdlZdW5f0VFBXJyckyW9X7dzzF6eXlh+fLliIqKwqZNmxAUFITIyEjs37+/OSKbnKWdw8ay5PMnCALmzJmD/v37Izg4+K77iXEOWW7q8MEHH9Q5wOv2V0JCQo33ZGRk4OGHH8bjjz+OF1988Z7fQyKR1PhYEIRa20zlfo6vMZ588kmMGTMGwcHBGDduHHbt2oULFy5gx44dTXgUd2fq4wPEPX9A446xrlz3yiv2OaxPY//s69q/ru3mpDHHGBQUhJdeegk9e/ZEREQEvvnmG4wZMwafffZZc0RtFpZ4DhvKks/frFmzcOrUKfz888/33Le5z6HcJF/Vws2aNQuTJ0+udx9/f3/jf2dkZGDIkCGIiIjA8uXL632fp6cngMom6+XlZdyenZ1dq9maSmOP70F5eXmhbdu2uHjxYpN9zfqY8vjM4fwBDT/GU6dO4caNG7U+d/PmzUblbe5zWJdWrVpBJpPVuoJR35+9p6dnnfvL5XK4ubmZLOv9up9jrEvfvn2xbt26po4nCks7h03BEs7f7NmzsXXrVuzfvx8+Pj717ivGOWS5qUOrVq3QqlWrBu2bnp6OIUOGICwsDKtWrYJUWv/FsICAAHh6emLv3r0IDQ0FUHmfPTY2Fv/6178eOHtDNOb4mkJubi6uXbtWowyYkimPzxzOH9DwY4yIiEBBQQHi4+PRu3dvAMCRI0dQUFCAfv36Nfj7Nfc5rIudnR3CwsKwd+9ePPLII8bte/fuxYQJE+p8T0REBLZt21Zj2549exAeHg6FQmHSvPfjfo6xLomJiaKeq6ZkaeewKZjz+RMEAbNnz8bmzZsRExODgICAe75HlHNosqHKNiA9PV1o3769MHToUOH69etCZmam8XW7oKAgYdOmTcaPP/nkE0GtVgubNm0SkpKShKeeekrw8vISNBpNcx/CPaWmpgqJiYnChx9+KDg5OQmJiYlCYmKiUFhYaNzn9uMrLCwU/vrXvwqHDh0SUlJShOjoaCEiIkJo06aNVRyfIFjW+RMEQXj44YeF7t27C3FxcUJcXJzQrVs3YezYsTX2sZRzuH79ekGhUAgrVqwQzp49K7zxxhuCo6OjcPXqVUEQBOHtt98Wpk6datz/ypUrgoODg/Dmm28KZ8+eFVasWCEoFAph48aNYh3CPTX2GL/44gth8+bNwoULF4TTp08Lb7/9tgBAiIqKEusQ6lVYWGj8/wyA8PnnnwuJiYlCamqqIAiWfw4be3yWdv5eeeUVQa1WCzExMTV+55WUlBj3MYdzyHLzAFatWiUAqPN1OwDCqlWrjB8bDAbh/fffFzw9PQWlUikMHDhQSEpKaub0DTN9+vQ6jy86Otq4z+3HV1JSIowYMUJo3bq1oFAoBD8/P2H69OlCWlqaOAdwD409PkGwrPMnCIKQm5srTJkyRXB2dhacnZ2FKVOm1Hrs1JLO4ddffy20bdtWsLOzE3r27FnjEdTp06cLgwYNqrF/TEyMEBoaKtjZ2Qn+/v7C0qVLmzlx4zXmGP/1r38J7dq1E1QqldCiRQuhf//+wo4dO0RI3TDVjz7f+Zo+fbogCJZ/Dht7fJZ2/u72O+/2n5HmcA4lVWGJiIiIrAKfliIiIiKrwnJDREREVoXlhoiIiKwKyw0RERFZFZYbIiIisiosN0RERGRVWG6IiIjIqrDcEBERkVVhuSGiZqHX69GvXz9MmjSpxvaCggL4+vri3XffrbF99+7dkEgktRbc8/T0hK+vb41t169fh0QiwZ49e+473wcffIAePXrc9/uJyHyw3BBRs5DJZFi9ejV2796NH3/80bh99uzZaNmyJd57770a+/fv3x9yuRwxMTHGbefOnUNZWRk0Gg0uXbpk3B4dHQ2FQoGHHnqo0bkEQUBFRUXjD4iIzBbLDRE1mw4dOmDRokWYPXs2MjIy8Ouvv2L9+vVYvXo17Ozsauzr5OSEXr161Sg3MTEx6N+/P/r3719re+/eveHo6AhBEPDpp58iMDAQ9vb2CAkJwcaNG2vsK5FI8NtvvyE8PBxKpRJr167Fhx9+iJMnT0IikUAikeCHH34AUHll6S9/+Qvc3d3h4uKCoUOH4uTJk6b8YyKiByQXOwAR2ZbZs2dj8+bNmDZtGpKSkvDee+/d9XbQkCFDahST6OhoDB48GAaDAdHR0XjxxReN26dMmQIAePfdd7Fp0yYsXboUHTp0wP79+/HMM8+gdevWGDRokPFrvfXWW/jss88QGBgIlUqFv/71r9i9ezf+97//AQDUajUEQcCYMWPQsmVL7Ny5E2q1Gt9++y0iIyNx4cIFtGzZ0kR/SkT0QEy6LCcRUR3OnTsnABC6desmlJeX33W/PXv2CACEjIwMQRAEwd3dXYiPjxcOHz4seHt7C4IgCGlpaQIA4ffffxeKiooElUolHDp0qMbXeeGFF4SnnnpKEIQ/V23esmVLjX3ef/99ISQkpMa233//XXBxcRHKyspqbG/Xrp3w7bff3texE5Hp8coNETW7lStXwsHBASkpKbh+/Tr8/f0xY8YMrFu3zrhPUVERHnroIdjZ2SEmJgYhISEoLS1Fz549IQgCNBoNLl68iLi4OCiVSvTr1w9JSUkoKyvD8OHDa3w/nU6H0NDQGtvCw8PvmfPYsWMoKiqCm5tbje2lpaW4fPnyA/wJEJEpsdwQUbOKi4vDF198gV27duHTTz/FCy+8gP/973/46KOPMHfu3Br7Ojg4oHfv3oiOjsatW7fQv39/yGQyAEC/fv0QHR2NuLg4REREQKVSwWAwAAB27NiBNm3a1PhaSqWyxseOjo73zGowGODl5VVjfE81V1fXRhw1ETUnlhsiajalpaWYPn06Xn75ZQwbNgwdO3ZEcHAwvv32W8yYMQPu7u613jNkyBCsX78eeXl5GDx4sHH7oEGDEBMTg7i4ODz33HMAgC5dukCpVCItLa3G+JqGsLOzg16vr7GtZ8+eyMrKglwuh7+/f6OPl4jEwaeliKjZvP322zAYDPjXv/4FAPDz88N//vMf/O1vf8PVq1frfM+QIUNw8eJF7N69u0ZhGTRoELZv346rV69iyJAhAABnZ2fMnTsXb775JlavXo3Lly8jMTERX3/9NVavXl1vNn9/f6SkpODEiRPIycmBVqvFsGHDEBERgYkTJ+K3337D1atXcejQIbz77rtISEhomj8UImp6Yg/6ISLbEBMTI8hkMuHAgQO1PjdixAhh6NChgsFgqPW50tJSQalUCk5OTjUGH2u1WsHBwUGwt7cXtFqtcbvBYBC+/PJLISgoSFAoFELr1q2FkSNHCrGxsYIg/DmgOC8vr8b3KSsrEyZNmiS4uroKAIRVq1YJgiAIGo1GmD17tuDt7S0oFArB19dXmDJlipCWltYEfypEZAoSQRAEsQsWERERUVPhbSkiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVWG5ISIiIqvCckNERERWheWGiIiIrArLDREREVkVlhsiIiKyKiw3REREZFVYboiIiMiqsNwQERGRVfl/UZToYXUgvYIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt # lade matplotlib als Bibliothek\n", + "import numpy as np\n", + "x = np.linspace(-2, 2, 170) # definiere x\n", + "xQuadrat = x**2 # berechen x^2\n", + "\n", + "# ### Anfang Grundgerüst ( mit # kann man Kommentare schreiben )\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_title(\"Parabel\") # Titel\n", + "ax.set_xlabel(\"X-Werte\") # x-Achsenbeschriftrung\n", + "ax.set_ylabel(\"y-Werte\") # y-Achsenbeschriftung\n", + "\n", + "ax.plot(x, xQuadrat) # x-Wert hier: x, y Wert hier: xQuadrat\n", + "\n", + "plt.show()\n", + "\n", + "# ### Ende Grundgerüst" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)** Machen Sie sich mit dem Grundgerüst vertraut, indem Sie \n", + " - `x` mit Werten Ihrer Wahl erweitern\n", + " - einen geeigneten Titel\n", + " - geeignete x- und y- Achsenbeschriftung wählen.\n", + " \n", + "Möchte man mehrere Kurven in einem Diagramm darstellen, so muss `ax.plot()` lediglich erneut aufgerufen werden. \n", + "Dabei ist es nützlich diese Kurven in einer Legende zu unterscheiden:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:22:27.961375Z", + "start_time": "2019-11-01T10:22:27.514251Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlF0lEQVR4nO3dd3wUdf7H8demF1JII4UEQgu9I72JoqiI9cSC2O5sp6d43ime7e6nWE7Pgh5iwV5OAbsoqBQFpPcOIZSQQoBUUnd+fwy7IZJAAklmd/N+Ph77mNnd2d3P7Ab2vd/5zvdrMwzDQERERMRNeVldgIiIiMiZUJgRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRaULefvttbDYbNpuN+fPnn3C/YRi0a9cOm83GiBEj6vz8rVu35qKLLjrjOj/55BO6dOlCYGAgNpuNNWvWnPFzHm/+/PnYbDY+++yzen1em83GY489VufHpaen89hjj9X7foo0FQozIk1QSEgIb7755gm3L1iwgJ07dxISEmJBVabs7GwmTJhA27ZtmTNnDkuWLKFDhw6W1dMY0tPTefzxxxVmRE6TwoxIE3TVVVcxc+ZM8vLyqtz+5ptvMnDgQJKSkhq9pqNHj2IYBtu2baOsrIzrrruO4cOHM2DAAIKCghq9HhFxHwozIk3Q1VdfDcBHH33kvC03N5eZM2dy0003nbB9aWkp//d//0fHjh3x9/cnOjqaG2+8kezs7Gqff86cOfTu3ZvAwEA6duzIW2+9VeV+x+GuH374gZtuuono6GiCgoK4+uqrGTJkCGAGruMPd61YsYLx48fTunVrAgMDad26NVdffTVpaWknvP7+/fv505/+RGJiIn5+fsTHx3PFFVeQmZlZZbuysjIeeugh4uPjCQ0N5ZxzzmHr1q1VthkxYgRdu3Zl0aJFDBgwgMDAQBISEnj44YepqKg4xTsNGzZsYNy4cTRv3pyAgAB69uzJO++847x//vz59OvXD4Abb7zReRjwdA5XiTRVCjMiTVBoaChXXHFFlZDx0Ucf4eXlxVVXXVVlW7vdzrhx43jqqae45ppr+Oabb3jqqaeYO3cuI0aM4OjRo1W2X7t2Lffddx/33nsvX3zxBd27d+fmm29m4cKFJ9Rx00034evry3vvvcdnn33GE088wSuvvALAk08+yZIlS3j11VcB2L17NykpKbzwwgt8//33PP300xw4cIB+/fpx8OBB53Pu37+ffv36MXv2bCZNmsR3333HCy+8QFhYGIcPH67y+pMnTyYtLY033niD6dOns337dsaOHXtCSMnIyGD8+PFce+21fPHFF1xxxRX83//9H3/5y19O+j5v3bqVQYMGsXHjRl566SVmzZpF586dueGGG3jmmWcA6N27NzNmzADgH//4B0uWLGHJkiXccsstJ31uETmOISJNxowZMwzAWL58ufHzzz8bgLFhwwbDMAyjX79+xg033GAYhmF06dLFGD58uGEYhvHRRx8ZgDFz5swqz7V8+XIDMF599VXnba1atTICAgKMtLQ0521Hjx41IiIijFtvvfWEOq6//voTanTU9emnn550X8rLy42CggIjODjYePHFF52333TTTYavr6+xadOmGh/reI0LLrigyu3/+9//DMBYsmSJ87bhw4cbgPHFF19U2faPf/yj4eXlVWVfAePRRx91Xh8/frzh7+9v7Nmzp8pjx4wZYwQFBRlHjhwxDKPyvZwxY8ZJ91lEqqeWGZEmavjw4bRt25a33nqL9evXs3z58moPMX399deEh4czduxYysvLnZeePXsSGxt7wllRPXv2rNLnJiAggA4dOlR7OOjyyy+vdb0FBQX8/e9/p127dvj4+ODj40OzZs0oLCxk8+bNzu2+++47Ro4cSadOnU75nBdffHGV6927dwc4odaQkJATtr3mmmuw2+3Vtjg5/PTTT4waNYrExMQqt99www0UFRWxZMmSU9YoIqfmY3UBImINm83GjTfeyEsvvURxcTEdOnRg6NChJ2yXmZnJkSNH8PPzq/Z5jj/EAxAZGXnCNv7+/iccjgKIi4urdb3XXHMNP/74Iw8//DD9+vUjNDQUm83GBRdcUOW5s7OzadmyZa2e8/e1+vv7A5xQa4sWLU54bGxsLAA5OTk1Pn9OTk61+xgfH3/Kx4pI7SnMiDRhN9xwA4888gjTpk3jiSeeqHabqKgoIiMjmTNnTrX3n8lp3DabrVbb5ebm8vXXX/Poo4/ywAMPOG8vKSnh0KFDVbaNjo5m3759p11TdX7fcRjMfjRQfXhziIyM5MCBAyfcnp6eDpjvrYicOYUZkSYsISGB+++/ny1btjBx4sRqt7nooov4+OOPqaiooH///o1coclms2EYhrPlxOGNN944obPumDFjeO+999i6dSspKSn18vr5+fl8+eWXVQ41ffjhh3h5eTFs2LAaHzdq1Chmz55Nenq6szUG4N133yUoKIgBAwYANbcIiUjtKMyINHFPPfXUSe8fP348H3zwARdccAF/+ctfOOuss/D19WXfvn38/PPPjBs3jksvvbRBawwNDWXYsGE8++yzREVF0bp1axYsWMCbb75JeHh4lW3/+c9/8t133zFs2DAmT55Mt27dOHLkCHPmzGHSpEl07Nixzq8fGRnJ7bffzp49e+jQoQPffvstr7/+OrfffvtJx+R59NFH+frrrxk5ciSPPPIIERERfPDBB3zzzTc888wzhIWFAdC2bVsCAwP54IMP6NSpE82aNSM+Pr5KABKRmqkDsIiclLe3N19++SWTJ09m1qxZXHrppVxyySU89dRTBAQE0K1bt0ap48MPP2TkyJH87W9/47LLLmPFihXMnTvXGQgcEhISWLZsGRdddBFPPfUU559/PnfddRe5ublERESc1mvHxsby4Ycf8s4773DxxRfzv//9j8mTJ/PSSy+d9HEpKSksXryYlJQU7rzzTi655BI2bNjAjBkzuP/++53bBQUF8dZbb5GTk8Po0aPp168f06dPP61aRZoim2EYhtVFiIi4qhEjRnDw4EE2bNhgdSkiUgO1zIiIiIhbU5gRERERt6bDTCIiIuLW1DIjIiIibk1hRkRERNyawoyIiIi4NY8fNM9ut5Oenk5ISEith04XERERaxmGQX5+PvHx8Xh5nbztxePDTHp6+gkz1oqIiIh72Lt37yknj/X4MOOYBG/v3r2EhoZaXI2IiIjURl5eHomJibWazNbjw4zj0FJoaKjCjIiIiJupTRcRdQAWERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm7N0jCzcOFCxo4dS3x8PDabjc8///yEbTZv3szFF19MWFgYISEhDBgwgD179jR+sSIiIuKSLA0zhYWF9OjRg6lTp1Z7/86dOxkyZAgdO3Zk/vz5rF27locffpiAgIBGrlRERERclc0wDMPqIsCcSGr27NlccsklztvGjx+Pr68v77333mk/b15eHmFhYeTm5tbvRJN2O+TuBS9vCDv51OQiIiIeKe8AlBdDeCvwqt/2kbp8f7tsnxm73c4333xDhw4dOO+884iJiaF///7VHoo6XklJCXl5eVUuDWLeI/Bid1jyasM8v4iIiKtbOQNe6gnf3GtpGS4bZrKysigoKOCpp57i/PPP54cffuDSSy/lsssuY8GCBTU+bsqUKYSFhTkviYmJDVNgVIdjhW5smOcXERFxdZnHvgOjUiwtw2XDjN1uB2DcuHHce++99OzZkwceeICLLrqIadOm1fi4Bx98kNzcXOdl7969DVNgTGdzmbW5YZ5fRETE1Tm+A2M6WVqGj6WvfhJRUVH4+PjQuXPnKrd36tSJX375pcbH+fv74+/v39DlQXRHc1mQCYU5EBzZ8K8pIiLiKkqL4NAuc71FF0tLcdmWGT8/P/r168fWrVur3L5t2zZatWplUVXH8W9mdngCyNpkbS0iIiKN7eBWwICgSAiOtrQUS1tmCgoK2LFjh/N6amoqa9asISIigqSkJO6//36uuuoqhg0bxsiRI5kzZw5fffUV8+fPt67o47XoAkfSzDCTPNTqakRERBpP5rEf8jGdwWaztBRLW2ZWrFhBr1696NWrFwCTJk2iV69ePPLIIwBceumlTJs2jWeeeYZu3brxxhtvMHPmTIYMGWJl2ZUcxwjVMiMiIk1N1nFhxmKWtsyMGDGCUw1zc9NNN3HTTTc1UkV15PgAMxVmRESkiXGEmRbWhxmX7TPjFo4/o8k1xh4UERFpHM4zmRRm3FtkO/DyhdJ8czRgERGRpqDoEOQfMNcdZ/daSGHmTPj4QVR7c13jzYiISFPh+M4LS4KAepwq6DQpzJwpZ78ZjQQsIiJNhAv1lwGFmTPnPKNJLTMiItJEOM9ksnbkXweFmTPlGPVQp2eLiEhT4RxjxtqRfx0UZs6UI5Ue3AYVZdbWIiIi0tAMw2XmZHJQmDlTYUng1wwqSiFnp9XViIiINKy8/VCSC14+ENXB6moAhZkz5+VVeVqaDjWJiIinc7TKRLYzz+p1AQoz9cHRm1thRkREPJ3j7F0XGCzPQWGmPhw/ErCIiIgnc6GRfx0UZuqDxpoREZGmIuvYd52LjDEDCjP1wxFmDu+G0kJLSxEREWkwFeWQvc1cd5EzmUBhpn40i4bgaMCA7C1WVyMiItIwDu2CihLwDYLw1lZX46QwU180ErCIiHg6x4ku0R3Ns3ldhOtU4u4coyBm6owmERHxUC42J5ODwkx9cbbMKMyIiIiHcs7JpDDjmTRHk4iIeLpMhRnPFp1iLgsyoTDH2lpERETqW9lRswMwKMx4LP8QCG9lrqt1RkREPE32FsCAoEhoFmN1NVUozNQnjQQsIiKe6viRf202a2v5HYWZ+uSco0kjAYuIiIdxwTmZHBRm6pNaZkRExFM5W2ZcZ+RfB4WZ+uSco2kTGIa1tYiIiNQnFz0tGxRm6ldUe/D2g9J8OJJmdTUiIiL1o/Ag5B8AbC43YB4ozNQvb9/K5reM9dbWIiIiUl8c32kRbcyzd12Mwkx9a9HNXCrMiIiIp3B8p8V2tbaOGijM1LdYhRkREfEwzjDTzdo6aqAwU98UZkRExNM4w0x3a+uogcJMfXM0weXuhaJD1tYiIiJypsqK4eA2c10tM01EQFjltAaZG6ytRURE5ExlbwajwpzGICTO6mqqZWmYWbhwIWPHjiU+Ph6bzcbnn39e47a33norNpuNF154odHqO2061CQiIp7i+P4yLjaNgYOlYaawsJAePXowderUk273+eef89tvvxEfH99IlZ0hxzHFDLXMiIiIm3Pxzr8APla++JgxYxgzZsxJt9m/fz9//vOf+f7777nwwgsbqbIz5Og3o5YZERFxd47vshYKM6fFbrczYcIE7r//frp06VKrx5SUlFBSUuK8npeX11Dl1cyRXrO3QHkp+Pg1fg0iIiJnym6vPMrgwi0zLt0B+Omnn8bHx4e777671o+ZMmUKYWFhzktiYmIDVliDsESzI7C9zAw0IiIi7ujIbnOKHm9/c8oeF+WyYWblypW8+OKLvP3229jq0OHowQcfJDc313nZu3dvA1ZZA5vtuH4zOtQkIiJuyvEdFtPJnLLHRblsmFm0aBFZWVkkJSXh4+ODj48PaWlp3HfffbRu3brGx/n7+xMaGlrlYgmd0SQiIu7ODQ4xgQv3mZkwYQLnnHNOldvOO+88JkyYwI033mhRVXWgMCMiIu7OxUf+dbA0zBQUFLBjxw7n9dTUVNasWUNERARJSUlERkZW2d7X15fY2FhSUlIau9S6Oz7MGIbLnpsvIiJSIzc4LRssDjMrVqxg5MiRzuuTJk0CYOLEibz99tsWVVVPolLAyxdKcs2pDcKTrK5IRESk9ooOQd4+c71F7c4otoqlYWbEiBEYhlHr7Xfv3t1wxdQ3Hz+I7giZ681kqzAjIiLuxNEq07w1BFjU/7SWXLYDsEdQvxkREXFXbnKICRRmGpbCjIiIuCvHZMku3vkXFGYaljPMrLO2DhERkbpSy4wAlXM0HdkDR49YWoqIiEitlZdUjmCvMNPEBTaHsGMdfzM1g7aIiLiJ7C1gLze/x0ITrK7mlBRmGppm0BYREXfjnCm7q1uMk6Yw09Cc/WbUMiMiIm7CTUb+dVCYaWjqBCwiIu7GTeZkclCYaWiOP4TsLVBeam0tIiIip2IYbnUmEyjMNLzwVuAfChWlcHCr1dWIiIic3JE95lQ83n4Q1cHqampFYaah2WyVyfaADjWJiIiLO7DWXEZ3NKfmcQMKM40hvpe5TF9tbR0iIiKn4viucnx3uQGFmcYQ19NcHlhjZRUiIiKn5viuiu9pZRV1ojDTGBzpNmM9VJRbW4uIiEhNDEMtM1KDiDbgFwLlxZXDQ4uIiLiaI3vg6GHw8oWYzlZXU2sKM43By6uyuU79ZkRExFU5vqNadAEff2trqQOFmcbiCDPqNyMiIq7KDQ8xgcJM43F0AlbLjIiIuCo37PwLCjONx9kJeANUlFlbi4iIyO8ZBqSvMdfVMiPVimgD/mFQUQJZm62uRkREpKrDu6H4iDnyb3Qnq6upE4WZxmKzQXwPc12HmkRExNU4O/92dZuRfx0UZhqTBs8TERFX5ez829PSMk6Hwkxj0rQGIiLiqpydf92rvwwozDQuxx9I5kYoL7W2FhEREQfDgPRjE0wqzMhJNW8NAeFQUQpZm6yuRkRExHRoF5Tkgre/OVu2m1GYaUw2mwbPExER1+Po/hDbDbx9ra3lNCjMNDYNniciIq7GTQfLc1CYaWzOTsBrLC1DRETEyU0Hy3NQmGlsjtSbuRHKSywtRUREBLu9Msw4jh64GYWZxhbeCgKbg73MDDQiIiJWOrQLSvPBJ8AtO/+Cwkzjs9kqm/HUCVhERKzm7PzbHbx9rK3lNFkaZhYuXMjYsWOJj4/HZrPx+eefO+8rKyvj73//O926dSM4OJj4+Hiuv/560tPTrSu4vqgTsIiIuAo37/wLFoeZwsJCevTowdSpU0+4r6ioiFWrVvHwww+zatUqZs2axbZt27j44ostqLSeqROwiIi4Cuc0Bu7Z+RfA0vakMWPGMGbMmGrvCwsLY+7cuVVue/nllznrrLPYs2cPSUlJjVFiw3Ck36xNUFYMvgGWliMiIk2U3Q4Hjo3866adf8HiMFNXubm52Gw2wsPDa9ympKSEkpLKs4Ty8vIaobI6CkuEoEgoyoGsjZDQx+qKRESkKcrZAaUF4BsEUR2srua0uU0H4OLiYh544AGuueYaQkNDa9xuypQphIWFOS+JiYmNWGUt2WzqNyMiItarMvKvW7VvVOEWYaasrIzx48djt9t59dVXT7rtgw8+SG5urvOyd+/eRqqyjjSDtoiIWM3xHeTGh5jADQ4zlZWV8Yc//IHU1FR++umnk7bKAPj7++Pv799I1Z0Bx6GlfSutrUNERJqu/SvMZcu+1tZxhly6ZcYRZLZv3868efOIjIy0uqT64/jDyd4CxS7Yr0dERDxbeUll5183DzOWtswUFBSwY8cO5/XU1FTWrFlDREQE8fHxXHHFFaxatYqvv/6aiooKMjIyAIiIiMDPz8+qsutHsxgIT4IjeyB9FbQZYXVFIiLSlGRsgIpS84SU5slWV3NGLG2ZWbFiBb169aJXL7P/yKRJk+jVqxePPPII+/bt48svv2Tfvn307NmTuLg452Xx4sVWll1/WvYzl/uWW1uHiIg0PY7vnoS+5okpbszSlpkRI0ZgGEaN95/sPo/Qsh9smAn7VlhdiYiINDWOMOP4Ye3GXLrPjMdLOHaMct8K8PTgJiIirsXZ+df9xzpTmLFSXHfw9oOig3B4t9XViIhIU1GQfex7x+YRA7cqzFjJx9+cpRR0qElERBqPo1UmOgUCwqytpR4ozFjNcTrcfoUZERFpJI4f0AnufUq2g8KM1XRGk4iINDZn51+FGakPjj+kA+vMGbRFREQakr0C9q8y1z3gTCZQmLFeeCsIigJ7GWSst7oaERHxdAe3QWk++AZDTCerq6kXCjNWs9l0qElERBqPc7C83uDlbW0t9URhxhU4DjUpzIiISEPzsP4yoDDjGnRGk4iINJZ9K82lh5zJBAozriG+N2AzJ53Mz7S6GhER8VQl+ZC1yVxXy4zUq4DQyk5Yap0REZGGsn8VYEBYEoTEWl1NvVGYcRWO4aQ1ErCIiDQUD5qP6XgKM65CZzSJiEhDc/xg9pDxZRwUZlyF4w8rfbU5oJGIiEh9MozjzmRSmJGGEJ0Cfs2gtACyt1hdjYiIeJoje6AwG7x8Kyc59hAKM67Cy9scwAh0qElEROqf47slthv4BlhbSz1TmHElCRo8T0REGsj+Y+PLeNAp2Q4KM67E2QlYZzSJiEg989D+MqAw41ocf2DZW+HoYWtrERERz1F2FNLXmOtqmZEG1SwaItoCBuzVoSYREakn6avBXgbNWkDzZKurqXcKM66m1UBzuWeJtXWIiIjncHynJA0Em83aWhqAwoyrSVKYERGRepZ2XJjxQAozrsbxh7Z/JZQVW1uLiIi4P3sF7F1mricNsLaWBqIw42oi2kBwNFSUwoE1VlcjIiLuLmszlOSaA7O26Gp1NQ1CYcbV2GyVyVmHmkRE5Ew5vkta9gNvH2traSAKM67I2W9mqbV1iIiI+3N8l3hofxlQmHFNx4cZu93aWkRExH0ZRmXLTCuFGWlMsd3BNxiKj2jSSREROX25eyFvP3j5QEIfq6tpMAozrsjbp3KERvWbERGR0+U4xBTXA/yCra2lASnMuCr1mxERkTO1x7PHl3GwNMwsXLiQsWPHEh8fj81m4/PPP69yv2EYPPbYY8THxxMYGMiIESPYuHGjNcU2NucZTQozIiJympydfz1zfBkHS8NMYWEhPXr0YOrUqdXe/8wzz/D8888zdepUli9fTmxsLOeeey75+fmNXKkFWvYDmzfk7oHcfVZXIyIi7qboEGRtMtfVMtNwxowZw//93/9x2WWXnXCfYRi88MILPPTQQ1x22WV07dqVd955h6KiIj788EMLqm1k/s0grru5rtYZERGpK8eov5HtITjK2loamMv2mUlNTSUjI4PRo0c7b/P392f48OEsXry4xseVlJSQl5dX5eK2NE+TiIicLmd/Gc8+xAQuHGYyMjIAaNGiRZXbW7Ro4byvOlOmTCEsLMx5SUxMbNA6G5T6zYiIyOlqAoPlObhsmHGw/W6qcsMwTrjteA8++CC5ubnOy969exu6xIaTeCzMZG6Eo0csLUVERNxIWTGkrzLX1TJjndjYWIATWmGysrJOaK05nr+/P6GhoVUubiukhTnxJAbsW251NSIi4i7SV5sTFgfHHPse8WwuG2aSk5OJjY1l7ty5zttKS0tZsGABgwYNsrCyRpZ0bF/Tau4nJCIiUsWeY98ZrQaaExh7OEunzywoKGDHjh3O66mpqaxZs4aIiAiSkpK45557ePLJJ2nfvj3t27fnySefJCgoiGuuucbCqhtZ0gBY8776zYiISO01of4yYHGYWbFiBSNHjnRenzRpEgATJ07k7bff5m9/+xtHjx7ljjvu4PDhw/Tv358ffviBkJAQq0pufI4/xP0robwEfPytrUdERFyb3Q57fjPXm0B/GQCbYRiG1UU0pLy8PMLCwsjNzXXP/jOGAc+2g6KDcNP3TeYPU0RETlPGBpg22Jyw+IE95nx/bqgu398u22dGjrHZoNWxfjO7F1lbi4iIuL7dv5jLpP5uG2TqSmHGHSQPM5epCjMiInIKjh++rYdaW0cjUphxB44/yL2/mf1mREREqmOvqGyZcfwQbgIUZtxBdIo5VkB5scabERGRmmWsh+Ij4BcCcT2trqbRKMy4A5sNko+1zuhQk4iI1MRxiKnVoCbTXwYUZtyH41CTOgGLiEhNHD94k5tOfxlQmHEfjmOf+5ZDaZG1tYiIiOupKK8cLb4Jdf4FhRn3EdEGQuLNuTb2/mZ1NSIi4moOrIHSfAgIg9huVlfTqBRm3IXNVtk6o0NNIiLye6kLzWXroeDlbW0tjUxhxp2oE7CIiNSkCY4v46Aw404cf6Dpq6Ak39paRETEdZSXVk4u2cQ6/4LCjHtp3grCk8Berlm0RUSk0v6VUFYEQZEQ3cnqahqdwoy7cU5tsNDaOkRExHUcf4jJq+l9tTe9PXZ3rdUJWEREfsfxA7cJHmIChRn34/hDPbAWjh6xtBQREXEBZcWwd5m53rrpzMd0PIUZdxMaDxFtwbBXDo4kIiJN175lUFECzVpAVHurq7GEwow7StbUBiIickzqcf1lbDZra7GIwow7cnYCVpgREWnyHD9sk5vmISZQmHFPjvFmMtdDYY61tYiIiHVKC2HfCnO9iXb+BYUZ99QsBqI7mutpv1hbi4iIWGfPUrCXQWhLaJ5sdTWWUZhxV47WGY03IyLSdDkPMTXd/jKgMOO+2owwlzt/srQMERGxkOM7wPGd0EQpzLir5GHg5QOHdsGhVKurERGRxlaQbY45BtD2bGtrsZjCjLsKCIWWZ5nrap0REWl6dv1sLmO7mX0pmzCFGXfmSOIKMyIiTc+OH81lE2+VAYUZ99bu2B/wrgVQUWZtLSIi0njs9sofsm1HWVuLC1CYcWdxPSEwAkrzYd9yq6sREZHGkrkBCrPANwiSBlhdjeUUZtyZlze0HWmuO5obRUTE8zlaZVoPBR9/a2txAQoz7s7RvKh+MyIiTcfOYz9g2+kQEyjMuD9Hx6/01ZraQESkKSgtNEf+BfWXOabWYWbfvn0NWYecrtA4iOkCGJWn6YmIiOfa/QtUlEJ4EkS2tboal1DrMNO1a1fee++9hqzlBOXl5fzjH/8gOTmZwMBA2rRpwz//+U/sdnuj1uHy2ukUbRGRJsN5SvaoJj2FwfFqHWaefPJJ7rzzTi6//HJychrncMbTTz/NtGnTmDp1Kps3b+aZZ57h2Wef5eWXX26U13cbx/ebMQxraxERkYal/jInqHWYueOOO1i7di2HDx+mS5cufPnllw1ZFwBLlixh3LhxXHjhhbRu3ZorrriC0aNHs2LFigZ/bbeSNBB8AiH/AGRtsroaERFpKIfTIGcH2LzNaW0EAJ+6bJycnMxPP/3E1KlTufzyy+nUqRM+PlWfYtWqVfVW3JAhQ5g2bRrbtm2jQ4cOrF27ll9++YUXXnihxseUlJRQUlLivJ6Xl1dv9bgs3wBoPRh2zDNbZ1p0sboiERFpCI7uBIlnQUCYtbW4kDqFGYC0tDRmzpxJREQE48aNOyHM1Ke///3v5Obm0rFjR7y9vamoqOCJJ57g6quvrvExU6ZM4fHHH2+wmlxW21FmmNnxIwy6y+pqRESkIezUFAbVqVMSef3117nvvvs455xz2LBhA9HR0Q1VFwCffPIJ77//Ph9++CFdunRhzZo13HPPPcTHxzNx4sRqH/Pggw8yadIk5/W8vDwSExMbtE6X0G4UfA+kLYbSIvALsroiERGpTxXlsGuhua5TsquodZg5//zzWbZsGVOnTuX6669vyJqc7r//fh544AHGjx8PQLdu3UhLS2PKlCk1hhl/f3/8/ZvgaIhRHSC0JeTtMwNN+3OsrkhEROrT/hVQkguBzSG+p9XVuJRadwCuqKhg3bp1jRZkAIqKivDyqlqit7e3Ts2ujs123CnamtpARMTjOE7JbjPSnM5GnGrdMjN37tyGrKNaY8eO5YknniApKYkuXbqwevVqnn/+eW666aZGr8UttB0Fq97VPE0iIp7I0flXp2SfoOF679aDl19+mYcffpg77riDrKws4uPjufXWW3nkkUesLs01tRlhnq53cCsc3g3NW1tckIiI1IvCg7B/pbmu/jIncOkwExISwgsvvHDSU7HlOIHh5pgzab/A1jkw4DarKxIRkfqwfS5gQGx3cxobqUITTXqalDHmctt31tYhIiL1Z/v35rLD+dbW4aIUZjyNI8zs/hWKc62tRUREzlxFWWVfyA7nWVuLi1KY8TSRbSGyPdjL1BFYRMQT7FkKJXkQFAXxva2uxiUpzHiilGPNkNvmWFuHiIicOcf/5e1Hg5e+tqujd8UTdTh2qGn7D+aIkSIi4r62/2AudYipRgozniixvzlC5NHDsG+Z1dWIiMjpytkJB7eBlw+0HWl1NS5LYcYTefuYzZEAW3VWk4iI23K0yrQapFmyT0JhxlM5Tt9TmBERcV+O/8Pb6xDTySjMeKp2o8xmyZztZjOliIi4l6NHIO1Xc73jBZaW4uoUZjxVQBi0Gmyuq3VGRMT9bJ8L9nKI7gQRbayuxqUpzHgy52jAOkVbRMTtbP3GXKpV5pQUZjyZo99M2mLzzCYREXEP5SWwfZ65nnKhtbW4AYUZTxaRbDZPGhWV/yhERMT17V4EpfnQLBbie1ldjctTmPF0ztGA1W9GRMRtbPnWXKacr1F/a0HvkKdzjgY8z5ysTEREXJthVJ64oUNMtaIw4+la9oWgSCjJNfvOiIiIazuwBvLTwTcYkodZXY1bUJjxdF7elWc1bf7S2lpEROTUNn9lLtufA74B1tbiJhRmmoLOl5rLzV+BvcLaWkREpGaGAZuO/fDsdLG1tbgRhZmmIHmYOYheQSbsWWp1NSIiUpPsrebI7d5+lXPsySkpzDQFPn6Vncg2fWFtLSIiUjNHd4C2Z0NAqLW1uBGFmaai8zhzuflLsNutrUVERKrnCDOdxlpbh5tRmGkq2o4E/1DIPwD7lltdjYiI/N6hVMhYDzZvSNEUBnWhMNNU+PhXntW06XNLSxERkWo4zmJqPQSCIqytxc0ozDQljkNNm77QoSYREVfjCDM6xFRnCjNNSduzwa8Z5O2H9FVWVyMiIg65+2DfMsCmMHMaFGaaEt9A6HCeua5DTSIirsNxpmmrQRASa20tbkhhpqnpfIm53PSFOTiTiIhYb8Msc9nlUmvrcFMKM01Nu3PANwiO7IH01VZXIyIih9Ng/wqweWnU39OkMNPU+AVVjiqpAfRERKznPMQ0GEJaWFuLm1KYaYqOP6tJh5pERKy1cba51CGm06Yw0xS1Hw0+AXD42ABNIiJijcO7zbNLdYjpjLh8mNm/fz/XXXcdkZGRBAUF0bNnT1auXGl1We7Nvxm0P9dc11lNIiLWcbTKtB4KzaKtrcWNuXSYOXz4MIMHD8bX15fvvvuOTZs28dxzzxEeHm51ae7PcVbThpk61CQiYpX1M82lDjGdER+rCziZp59+msTERGbMmOG8rXXr1tYV5ElSxoBvsNnEuX8ltOxrdUUiIk1L1mbIXA9evpV9GeW0uHTLzJdffknfvn258soriYmJoVevXrz++usnfUxJSQl5eXlVLlINv2DoeKG5vv5Ta2sREWmK1n9mLtufq7mYzpBLh5ldu3bx3//+l/bt2/P9999z2223cffdd/Puu+/W+JgpU6YQFhbmvCQmJjZixW6m25XmcsMsqCi3thYRkabEMCp/SHa7wtpaPIDNMFy3w4Sfnx99+/Zl8eLFztvuvvtuli9fzpIlS6p9TElJCSUlJc7reXl5JCYmkpubS2hoaIPX7FYqyuC5FCjKgQmzzbmbRESk4e1dDm+eYx7uv3+HOQaYVJGXl0dYWFitvr9dumUmLi6Ozp07V7mtU6dO7Nmzp8bH+Pv7ExoaWuUiNfD2rex0tk6HmkREGo2jVabTRQoy9cClw8zgwYPZunVrldu2bdtGq1atLKrIAzkONW3+CsqOWluLiEhTUFEOG4/NxeT4P1jOiEuHmXvvvZelS5fy5JNPsmPHDj788EOmT5/OnXfeaXVpnqPlWRCWBKX5sPU7q6sREfF8u+ZDYTYERUKbEVZX4xFcOsz069eP2bNn89FHH9G1a1f+9a9/8cILL3DttddaXZrn8PKC7sd+Gaz7xNpaRESagrUfmcuul5uH++WMuXQH4PpQlw5ETdbB7TC1L9i84b4t0CzG6opERDxTcS78uwOUF8Mff4aE3lZX5LI8pgOwNJKo9pDQF4yKynEPRESk/m36wgwyUSkQ38vqajyGwoyYeow3l2s/tLYOERFPtubYIaaeV4PNZm0tHkRhRkxdLzeH1M5YDxkbrK5GRMTzHEqFPYsBG3T7g9XVeBSFGTEFRUDK+eb6uo+trUVExBOt+5+5bDMcwhKsrcXDKMxIpR5Xm8t1/9P0BiIi9ckwKs9i6nGNtbV4IIUZqdTuXAiKgoJM2DHX6mpERDzH7l/gcCr4hZij/kq9UpiRSj5+lR2BV79vbS0iIp7E8X9q18vAL9jaWjyQwoxU1es6c7ltDhRkWVuLiIgnKM41T8kG6H29tbV4KIUZqSqmkznmjL288viuiIicvvWfQflRiO4ICX2srsYjKczIiXpPMJer3jM7rYmIyOlb/Z657DVBY8s0EIUZOVGXy8A3CHK2w95lVlcjIuK+MjZA+mpzHC9Hn0SpdwozcqKAUOhyqbm+6l1raxERcWeOVpmUMRAcZW0tHkxhRqrn6KS2YSYcPWJpKSIibqm0qLLvYe+J1tbi4RRmpHqJ/SGms9lpbd0nVlcjIuJ+Ns42z2QKT4K2Z1tdjUdTmJHq2WzQ9yZzfcVb6ggsIlJXK94yl31uBC993TYkvbtSs+5/MDsCZ2+BPUutrkZExH0cWAf7V5gdfx3jd0mDUZiRmgWEmbNpQ+UvDBERObWVM8xlp4ugWYy1tTQBCjNyco5DTZs+h8IcS0sREXELJfmVM2Q7/g+VBqUwIyeX0BviekJFaeUphiIiUrN1n0BpAUS2g9ZDra6mSVCYkVM764/mcvmbYK+wthYREVdmGLDsdXO93x814m8jUZiRU+t6OQRGQO4e2Pqd1dWIiLiu1AXmSRN+zaDnNVZX02QozMip+QZWDqK3bLq1tYiIuDJHq0yP8eZo6tIoFGakdvrdDDYv81dH1harqxERcT1H9sDWb831s/5kbS1NjMKM1E54EqRcYK6rdUZE5ETL3wDDDm1GQHSK1dU0KQozUnuOXxprP4ajh62tRUTElZQWVk7Mq1aZRqcwI7WXPAxiukBZIax8x+pqRERcx9qPzB95zVtDh/OtrqbJUZiR2rPZYOCd5vpvr0FFmbX1iIi4Arsdlrxqrg+4A7y8ra2nCVKYkbrpdgUEx0B+Omz83OpqRESst/17OLQT/MOg57VWV9MkKcxI3fj4Vx4PXvKyZtMWEVnyirnsewP4N7O0lKZKYUbqru9N4BMAB9ZC2mKrqxERsU76Gti9CLx84Kxbra6myVKYkboLjoQeV5vri1+ythYRESstmWouu1wKYQnW1tKEuVWYmTJlCjabjXvuucfqUmTgnwEbbJsDmZusrkZEpPEdSoUNM831QXdZW0sT5zZhZvny5UyfPp3u3btbXYoARLWDzheb67++aG0tIiJWWDLVHCSv7SiI62F1NU2aW4SZgoICrr32Wl5//XWaN29udTkAGIbBvE2ZGE25A+zge8zl+k/NYbxFRJqKgixY/b65PuRea2uxkGEY/Lg5E7vd2u9Ctwgzd955JxdeeCHnnHPOKbctKSkhLy+vyqUhvL80jVveXcEf313J4cLSBnkNl5fQ2xy226iAxVOtrkZEpPH8Ng3KiyGhL7QeYnU1lsgvLuPuj9dw8zsreG3hLktrcfkw8/HHH7Nq1SqmTJlSq+2nTJlCWFiY85KYmNgwhdls+Hl7MW9zJhe8tIjfduU0zOu4OscvklXvQuFBa2sREWkMxXmw7A1zfci95oCiTcyG/blc9PIvfLU2HW8vGz5e1r4HLh1m9u7dy1/+8hfef/99AgICavWYBx98kNzcXOdl7969DVLbhAGtmHXHIJKjgjmQW8zVry/lhXnbqLC4qa3RJQ+H+F5QfrRyrAUREU+2/HUoyYWoDpUT8DYRdrvBG4t2cdmri0nLKSIhPJD/3TqQPw5rY2ldNsOFO318/vnnXHrppXh7Vw4NXVFRgc1mw8vLi5KSkir3VScvL4+wsDByc3MJDQ2t9xoLS8p55IuNzFy1D4CzkiN4cXxP4sIC6/21XNaWb+Dja8CvGdyzHoIirK5IRKRhlBTAC93g6CG4dDr0uMrqihpNdn4Jf/10LQu2ZQMwunMLnrmiO+FBfg3yenX5/nbplplRo0axfv161qxZ47z07duXa6+9ljVr1pwyyDSGYH8fnvtDD/5zVQ+C/bxZlnqIMS8uYu6mTKtLazwpF0CLblBaAEv/a3U1IiINZ8WbZpCJaANdL7e6mkazYFs2Y15cxIJt2fj7ePGvS7ry2oQ+DRZk6srH6gJOJiQkhK5du1a5LTg4mMjIyBNut9qlvVrSM7E5d3+0mvX7c/njuyu4YVBrHhjTkQBf60NXg7LZYPjf4H8TzE5xA++AQNc460xEpN6UFsGvxwYKHfpX8Hbpr9B6UVJewbNztvLGL6kApLQI4aWre5ESG2JxZVW5dMuMu0mOCmbm7YO4ZUgyAG8v3s0lr/zK1ox8iytrBB0vgpjOUJJnzqgtIuJpVs6AooMQ3gq6/8HqahrcruwCLv/vYmeQuX5gK77482CXCzLg4n1m6kND95mpyc9bsvjrp2vJKSzFz8eLB87vyA2DWuNlcY/vBrVhFnx2ozlz7D3rIDDc6opEROpHaRG81BMKMmHsS9BnotUVNRjDMPh05T4e+3IjRaUVNA/y5ZkrenBu5xaNWofH9JlxZyM7xjDnnmGMTImmtNzOP7/exMQZy8jMK7a6tIbTeRxEdzJ7+S9+2epqRETqz7LpZpAJT6qcm84DHSos5fb3V/G3z9ZRVFrBwDaRfPeXYY0eZOpKYaYBRYf489YN/fjXuC74+3ixaPtBznthIXM2HLC6tIbh5Q1nP2SuL/2vxp0REc9QnAu/vmCuj3gQfFyj02t9+3lrlvkdtTEDHy8b95+Xwvu39Cc2rHZDo1hJYaaB2Ww2JgxszTd3D6FrQihHisq47f1V/O2ztRSWlFtdXv3reBHE9YSyQvjlP1ZXIyJy5pa8CkcPm+PKdPe8U7GLSsv5x+fruXHGcrLzS2gX04zP7xzMnSPb4e0mXSMUZhpJu5gQZt0+mNuGt8Vmg/+t2McFLy1iZdphq0urXzYbnP2wub7sdchLt7YeEZEzUXSockDQkZPNFmgPsmbvES566RfeX2rOr3fj4NZ8fdcQuiaEWVxZ3SjMNCI/Hy8eGNORj/44gPiwANJyirhy2mKe+m4LJeUVVpdXf9qNgqSBUFECC56xuhoRkdP3y/NQmm+OpdVpnNXV1JvyCjsvztvO5f9dzK6DhcSGBvD+zf15dGwXtxxORGHGAgPaRPLdPcO4rFcCdgOmLdjJxS//yob9uVaXVj9sNhj1iLm+6l3I3mZtPSIip+PIHvhturk+6mHw8oyvzB1ZBVwxbQn/OTYFz0Xd45hzz1CGtI+yurTT5hmfjBsKC/Tl+at6Mu26PkQG+7E1M59LXvmVF+dtp6zCbnV5Z67VIOgwxpxR+8fHra5GRKTufnrCbGFuPRTaj7a6mjNWYTd4feEuLnhpEWv2HiEkwIcXx/dk6jW9XWYk39OlMGOx87vG8sO9wxjTNZZyu8F/5m3jslcXsy3TAwbaO+cxsHnBlq9hz1KrqxERqb0D62DdJ+b6uY+7/czYu7IL+MNrS3ji282UltsZ1iGa7+8ZxrieCVaXVi8UZlxAZDN/Xr22Ny+O70lYoC/r9+dy0Uu/8NqCne49C3dMR+g1wVz/4WHw7PEZRcSTzHsUMMz5lxL6WF3NabPbDd78JZUxL5onnDTz9+Gpy7rxzo39iA/3nAmRFWZchM1mY1zPBH6499hAexV2pny3hSumLWZHlhu30ox4EHyDYN8y2PS51dWIiJza9nmw8yfw8q08O9MN7T5YyPjpS/nX15soKbczpF0U3987jPFnJWFz85am31OYcTEtQgN464Z+PH15N5r5+7B6zxEuePEXpv7kpn1pQuNg0N3m+g+PQNlRa+sRETmZijL4/kFzvf+tEJFsbT2nwW43ePvXVM5/cSHLdh8i2M+bJy7tyns3n0WCB7XGHE9hxgXZbDau6pdUpZXm3z9sY9xUNz3jafBfIDQBcvfAkqlWVyMiUrPlb8LBbRAUCcPut7qaOtuRlc+Vry3hsa82UVxmZ1DbSObcM4xr+7fyuNaY4ynMuLD48EDeuqEfL1zVk/AgXzYdyGPcK7/yzJwtFJe50bg0fkFw7j/N9UXPayA9EXFNhTkw/0lz/eyH3Wqy3NJyOy/9uJ0LXvyFlWmHCfbz5l/juvD+zf1JjAiyurwGpzDj4mw2G5f0SmDuvcO5sFscFXaDV+fv5IKXFrFi9yGry6u9rpdDYn8oK4J5j1ldjYjIieY/ac7D1KIb9L7e6mpqbfWew4x9+Reen7uN0go7Z3eMYe6k4UwY2BovN5mO4EzZDMOzTzGpyxTi7mDOhgwe/mID2fkl2GwwYUAr/npeCqEBvlaXdmr7V8HrZwMG3PidORaNiIgrSF8Dr48Eww4Tv4bkoVZXdEpFpeX8+/ttzFicimFARLAfj47tzMU94j3ikFJdvr/VMuNmzu8ay7x7h3Nln5YYBry7JI1zn1/Ad+sP4PK5NKF35a+db+4zO9qJiFjNbjf/TzLsZiuyGwSZhduyGf2fhbz1qxlkLuuVwLxJwxnXM8EjgkxdqWXGjf264yAPzV7P7pwiAM7pFMPj47q6dm/1okPwch84eghGPwGD/mx1RSLS1K18G776C/iFwJ+Xm2dhuqis/GL+7+vNfLnW7HuYEB7IE5d2ZURKjMWV1T+1zDQRg9tFMeeeYdx9djt8vW3M25zFuc8v4I1Fuyh31dO4gyIqOwPPnwK5+62tR0SatsKDMPdRc33kZJcNMhV2g/eWpjHquQV8uTYdL5s5w/UP9w7zyCBTV2qZ8RDbM/OZPHs9y3cfBqBLfChTLutG95bh1hZWHbsdZpwPe3+DjhfB+A+srkhEmqrZt8PaD6FFV/jTAvD2sbqiE2zYn8tDn29g7d4jAHRvGcYTl3SjW8swawtrYHX5/laY8SB2u8GnK/fy5LdbyD1ahtexDsKTRqcQFuhiHYQzNsD04WAvhz+8B50vtroiEWlqdv4E710K2ODmHyDxLKsrqiK/uIzn527jncW7sRsQ4u/D/eencG3/Vng3gbOUdJipifLyMgfb+/G+4VzaKwG7Ae8sSePsf8/n0xV7sbvSPE+xXc3B9AC+vR+OHrG0HBFpYkoLzX4yAGf90aWCjGEYfLv+AOc8v4AZv5pBZmyPeH68bzjXD2zdJIJMXallxoMt3nGQR77cyI6sAgB6J4Xzz3Fd6ZrgIk2TZcUwbTDk7IDeE+Hil6yuSESaiu8fMkckD20Jdy4F/xCrKwLMEXwf+3ITv+w4CECryCD+Oa4rwztEW1xZ49NhpuM05TAD5qiQby9O5YV52ykqrcDLBtcNaMV956YQFuQCh552/wpvX2CuX/8ltBlubT0i4vn2rYA3zzVPxb72M2h/rtUVkV9cxovztvP24t2U2w38vL24bXgb7hjZjgBfb6vLs4TCzHGaephxOJB7lCe+2czX6w4AEBnsx9/HdOSK3i2tHyHy60mw4k0IS4TbF0NA0/2cRKSBlRbBa0PNFuFuf4DLX7e0HLvdYPbq/Uz5bgsHC0oAc5iNhy/qTKvIYEtrs5rCzHEUZqr6/aGnnonhPDK2M72TmltXVEkB/HcQHEmDXhNgnCajFJEGMudBWPoqhMTBHUsg0Lr/+zbsz+WRLzawas8RAJKjgnlkbGdG6lRrQGGmCoWZEzkOPb04bzuFpeaElZf0jOfvYzoSF2bRgHu7f4W3LwQMuOZ/0OE8a+oQEc+Vugjeuchct/Dw0sGCEp77YRsfL9+DYUCQnzd3nd2em4a0xt+naR5Sqo7CzHEUZmqWlVfMs99v5bNV+zAMCPD14rbhbbl1WFsC/Sz4B+XokNeshXm4KTiq8WsQEc9UnAvThsCRPZadcFBSXsGMX3fzyk87yC8pB2Bcz3geHNOJ2LCARq/H1SnMHEdh5tTW78vln19vdA64Fx8WwN/HdGz8ycrKjsJrw+HgVugwBq7+CJrgHCMiUs8MA2beAhs+g/Ak88dSI569ZJ5qncFTczaz99BRALomhPLwhZ3p3yay0epwNwozx1GYqR3DMPhm/QGmfLuF/UfMf2y9k8J5+KLO9GrM/jQZ682ZtStK4YJ/m+M/iIiciTUfwee3gc0bbprTqGPKrN17hH99vYkVaeaPxRah/tx/Xkcu65Vg/ckXLk5h5jgKM3VTXFbB6wt38er8nRwtM/vTXNgtjvvPS6F1VCP1rF86Deb8Hbz94U8/Q4sujfO6IuJ5cnbCa8OgtABG/gOG398oL5t+5CjPfr+V2avN+ecCfL24dVhbbh3ehiA/15sywRUpzBxHYeb0ZOYV8+/j+tP4eNm4tn8Sd49qT2Qz/4Z9ccOAD/8A23+AqBT440/g36xhX1NEPE9ZsTmeTMY6aDUYJn4FXg3bHzD3aBnTFuzkrV9SKSk3J/y9vHdL7j8vRf1i6shjwsyUKVOYNWsWW7ZsITAwkEGDBvH000+TkpJS6+eozZthGAbl5eVUVFTUV+luxdvbGx8fn2r7x2zJyOOp77Ywf2s2AM38fbh9RFtuGpzcsJ2ECw+anfXyD0DXK+DyN9R/RkTq5qt7YOUMCIyA2xZBWMsGe6nisgreXbKbV37eSe7RMgDOah3Bwxd19vgJIRuKx4SZ888/n/Hjx9OvXz/Ky8t56KGHWL9+PZs2bSI4uHaHPE71ZpSWlnLgwAGKiorqu3y3EhQURFxcHH5+ftXe/+uOg0z5bjMb9ucB5nHfSed24Io+iQ03T0jaEvN0baMCLnwO+t3SMK8jIp5n7Scw+0+ADa77DNqd0yAvU2E3mLVqH/+Zu4303GIAOrRoxt/O68ioTjGNexKFh/GYMPN72dnZxMTEsGDBAoYNG1arx5zszbDb7Wzfvh1vb2+io6Px8/Nrcn94hmFQWlpKdnY2FRUVtG/fHi+v6ucftdsNvlqXzrPfb2XfYbOTcNvoYCadm8KYrrEN05nt15dg7sPg7Qc3zoGWfer/NUTEs2RugjdGQVkRDP87jJxc7y9hGAY/bs7ime+3sC3THIQ0LiyASed24LLeLTUZZD2oS5hxq15Iubm5AERERNS4TUlJCSUlJc7reXl5NW5bWlqK3W4nMTGRoKCg+ivUzQQGBuLr60taWhqlpaUEBFR/XNfLy8a4ngmc3zWW95akMfXnHezMLuTOD1fRJT6Uv45OYURKdP0GwkF3wd7fYMvX8Mm18Kf5EBJbf88vIp6l6BB8fLUZZNqMMMNMPVu6K4fnftjqHM4iLNCXO0e25fqBrZvsPEpWc5uWGcMwGDduHIcPH2bRokU1bvfYY4/x+OOPn3B7dcmuuLiY1NRUkpOTa/wCbypO573IKy7jzUWpvLFol3Mk4T6tmvPX0SkMbFuPYycU58Eb55jjz7Q8C274GnwauBOyiLifinL44HLYNR/CW5k/foJq/vFbVyvTDvP83K38uiMHAH8fL24aksxtw9sSFugCE/d6GI88zHTnnXfyzTff8Msvv9CyZc2duKprmUlMTFSYOYUzeS8OFZYybcFO3lm829l7f2j7KP46OoUeieH1U+DBHeb4MyW55vxNF7+sDsEiUpVjFHHfILh5LsR2rZenXbfvCM/P3eY8EcLX28ZV/RL588j2OkOpAXncYaa77rqLL7/8koULF540yAD4+/vj769f7Y0pItiPyRd04uYhyUz9aQcfL9/Dou0HWbT9IKM6xnD3qPZnHmqi2sEVb8GHV8Lq9yCqAwy+u17qFxEPsOItM8gAXDqtXoLMpvQ8np+7jXmbMwHw9rJxRe+W/PnsdiRGNN2uCa7IpcOMYRjcddddzJ49m/nz55OcnGx1SXISLUID+NclXfnTsDa8MG87s1fv48ctWfy4JYsRKdHcPar9mc3O3f4cGP0EfP+g2Sm4eSvoPK7+dkBE3NP2efDNX831EZPP+P+FzQfyePmn7Xy7PgMALxtc0jOBu0e1b7zBQ6VOXDrM3HnnnXz44Yd88cUXhISEkJFh/mGFhYURGGjR7M5uYu/evUyYMIGsrCx8fHx4+OGHufLKKxvltRMjgnjuDz24c2Rbpv68gy/WpDN/azbzt2YztH0UfxnVnr6tT/M49oDb4XAqLJsOs/4EoQnQsm/97oCIuI+MDfDpDeYQDj2ugeF/O+2nWrv3CC//tMPZEmOzmSOg33NOB9rFaOBOV+bSfWZqOitmxowZ3HDDDbV6jpMdc/PkPjMHDhwgMzOTnj17kpWVRe/evdm6dWuN4/M05Hux+2Ahr87fwcxV+6mwm39ug9pG8pdR7U9vkrWKcvj4Gtj+vTkY1k3fQ3SHeq1ZRNzA4d3w5nlQkAGth8J1s8Cn+rGyTmb57kO8/NMOFm4z+8Q4Qsyfz25Hx1iNHG8Vj+wAfLqaapj5ve7du/PNN9+QmJhY7f2N8V7sPVTEq/N38OmKfZQfCzX9Wjfn9hFtGZlSx8GlSgrgnbGQvgpCW8LN3zfo6J4i4mIKsuCt8+DQLojpDDd+C4G1P4xtGAaLd+bw0o/b+S31EGD2ibmkZwJ3jGxL22i1xFjN4zoAy5lZsWKFczwdKyVGBDHlsu7cObId/52/k/+t2Mvy3YdZ/vYKOsaGcNvwtlzUPQ4f7+oH7avCvxlc+ym8dT7kbIf3LoMbv4PgejwlXERcU3EuvH+5GWTCkswWmVoGmQq7wdxNmby2cCer9xwBzLOTruybyO3D26pjr5tSy4yHt8zk5OQwdOhQ3njjDQYNGlTjdla8Fxm5xbz1ayofLE1zjlOTEB7In4a14Q99E2s399ORPWYzc346xHaD67+s13ElRMTFlOSbP172LYOgKPMwc1S7Uz6suKyCWav28/qiXaQeLATMcWKuPiuJW4e3IS5M/TBdTV1aZmrxE1hc0UcffURAQAD79+933nbLLbfQvXt350jJJSUlXHrppTz44IMnDTJWiQ0LYPIFnVj8wCjuPy+FyGA/9h85yqNfbmTw0z/x0o/bOVJUevInCU+C6z+H4GjIWA/vX2b+ahMRz1NaCB/8wQwyAeEwYfYpg8yRolJe/nE7Q57+icmz15N6sJDQAB/uHNmWX/5+No9d3EVBxgOoZcZNW2YMw6Bnz54MHTqUqVOn8vjjj/PGG2+wdOlSEhISMAyDa665hpSUFB577LFTPp8rvBfFZRV8unIf0xfuZO8hc+6nAF8vLu/dkhsHJ5/8bILMTeaklEcPQct+cN1MCNBMtSIeo7QQPhoPqQvBPxSu/wISete4+d5DRbz5Syr/W7GXouNafm8eksxV/RIJ9lcvC1enDsDHqWuYMQyDo2UVjV5noK93nec0+vrrr7niiit45JFH+Pe//82iRYvo0qULAL/88gvDhg2je/fuzu3fe+89unXrVu1zuUKYcSivsPPthgxeW7CTjemVc2uNSInm5iHJDGkXVf17dWCd2Sm4+AjE9TR/temQk4j7K86DD66EvUvBrxlM+BwS+52wmWEYLN99mBm/pvL9xgyOnWdAp7hQbhvehgu6xeFbmz554hIUZo5T1zBTVFpO50e+b/Q6N/3zPIL86v5LoXfv3mzcuJEffviB4cOHn/bru1KYcTAMg99SD/HmL6nM25yJ4y81pUUINw1pzbieCSdO6paxHt4dB0U55hkO138BzWIav3gRqR9Fh8zOvumrzNbW62adMLZUcVkFX61N5+3Fu6v8ABrSLopbh7ep+QeQuDSdzdREfP/992zZsoWKigpatGhhdTn1zmazMaBNJAPaRLL7YCFvL97N/1bsZWtmPn+fuZ5n5mzl6rOSuLp/Egnhx455x3aDG741A03WJnhzNEyYBRFtrN0ZEam73H1mkMneYo4pdf3nENfDeXdmXjHvL03jw9/2kFNo9q/z9/Hist4J3DAomZTYEIsKl8amlhk3Pcy0atUqRowYwSuvvMLHH39MUFAQn3766Wm/viu2zFQn92gZnyzfwzuL09h/xOxX42WDUZ1aMGFAK4a0i8LLywY5O+G9S+FImtk5+NrPIL6ntcWLSO1lbTE79Ofth5A487BxTCfnoaT3l6bx7foDzjGr4sMCmDCwNeP7JdI8uO4D54nr0WGm43hiB+Ddu3czcOBA7rrrLiZPnszKlSvp168fy5cvp0+fPqf1nO72XpRX2Jm7KZP3lqaxeGeO8/bkqGCu7Z/ElX0SCas4BB9cbh568msGV74N7c+1rmgRqZ3URfDJdWb/t6gOcN0scv1jmb1qHx/8toftWQXOTfu1bs6Ng5MZ3blF7caoErehMHMcTwszhw4dYvDgwQwbNozXXnvNefu4ceMoKSlhzpw5p/W87vheOOzIyuf9pXuYuXIf+SXlgHkW1MU94rmuVwTdfrkDW+pCsHnBeVOg/63meOUi4npWvgPfTAJ7OUbLs9g4fDrvrs3jy7XpFJfZAbMl++Ie8UwY2IquCTpr0VMpzBzH08JMQ/GE96KwpJwv1qTz7pLdbMnId97eJSaA55u9S0r65+YNfW6EMc+c1hwuItJAKsph3qOwZCoAu+PGMKnkFlallzg36dCiGdcNaMUlvRIIDfC1qlJpJOoALE1SsL8P1/RP4uqzElm15zDvL93Dt+sPsDGrmPOyruQ232D+5v0hXitnYGRuxPaHdyA03uqyRaQgG+OzG7HtXgTAy/YreC71UqAEPx8vLuwWx7X9k+jTqrnOSpJqKcyIx7HZbPRpFUGfVhE8dnEXvlybzifL9zBt/4VsrYjnBd9XCNu3jMKXB1N40WvE9BhtdckiTVbmxkUEfXETIaVZFBgB3F92K9/Z+9M2Opir+iVyRZ9EItShV05BYUY8WligLxMGtGLCgFZsTM/lf8tbcfXqRJ6z/5tOZXsInPUHvvjhco4OfpAxPVsRFqSma5GGVlhSzg8b0yme/x+uzH0bH5udnfY47rXdT5e+ZzGrb0t6JYarFUZqTWFGmowu8WE8Pi6M4gs6MW/tYA78/A/OLvyOcYWfsXHOcsZ/czetOvbikl4JjOwYjb9PLSa6FJFaKS23s2h7Np+vSWfdpo38i2kM814PNlgcOIJDI5/hk57tajfBrMjvKMxIkxPg681FfdtB3485vHIWAXPupUtZGrNtD/DElmu5beO5hAX6cWH3OC7uEU+/1hF4e+kXokhd2e0GK9IO8/ma/Xy7/gBHikoZ7/0zX/l8QKjtKGVe/uSfPYVBg2/SGYZyRhRmpElr3ucy6DAIPr+DgJ0/8i/ft7nAbw1/K57Ih7+V8eFve4gO8eeCrrFc2D2evq2am4PyiUi1DMNg3b5cvt1wgK/WpJOeWwxAS1sWrwW+SX9jvbldy374jnuViOgOVpYrHkJhRiQk1hwheNl0mPsIAyvWMD9oM/MirmNy9tlk55fwzpI03lmSRkyIPxd0i+PC7nH0SVKwEQGzBWb13sN8uz6DORsynKNzA4T6e/HPuCWMzZ6Od8VR8AmEUQ9j638beOmQktQPjTPj5mOr1Be9F8cc3A7f3AepCwAwItqytvs/eC+rLT9syiC/uNy5aWxoAKO7tODczi3onxyJn49GH5Wmo8JusCz1EHM2HGDOxgwy8yrHgwny82ZkSgzXxe2j/7Z/45Wx1ryj1RC4+CWIbGtR1eJONGjecRRmakfvxXEMAzbMhO8nQ0GmeVvnSygZ+Qi/5jTj63UHmLsx0znaMECIvw/DU6I5t3MLRnaM0YBe4pEKSsr5ZXs28zZn8fOWLOfkjmD+GxjVKYYx3eIYEZWP//zHYfNX5p1+IXDOo9D3ZvBS6JfaUZg5jsJM7ei9qEZxLvw8BZa9BoYdvHyg9/Uw7H5Kglrwy/aDzN2UybzNWRwsqPxV6uNlzvZ9bucWnN0xhsSIIAt3QuTM7DtcxI+bs5i3OZPfdh2itMLuvC88yJdzO7VgTLdYBreLwr8sHxY+C7+9BvYycwqRPjfAiMnQLNq6nRC3pDBzHIWZ2tF7cRIH1sG8x2Dnj+Z1nwDodwsMmQTBkcf6Cxxh7qZM5m7KYGd2YZWHt4kOZkSHGIanRNM/OYIAX/UTENdVWm5n1Z7DLNyWzU9bsqpMDQLQOjKIUZ1aMKpTDP1aR+Dr7QWFOfDbf+G36VCSa27Y9mwY/QS06GzBXognUJg5TlMPM0VFRXTq1Ikrr7ySf//73zVu1xTeizO2+1f46V+wZ4l53a8Z9L3JnLgyrKVzs13ZBczdlMmPm7NYuecwFfbKf2L+Pl4MaBPJiJRohneIJjkqWAODiaUMw2DXwUIWbctm0faDLNmVQ1FphfN+by8bfVo155xOMYzq1II2x//N5mfA4pdhxQwoOxbiozvB6P+D9udYsDfiSRRmjtPUw8xDDz3E9u3bSUpKUpipD4YBO36En/4JB451arR5Q5dLYMCd0LJPlc1zj5axeMdBFmzLZv7WbDLyiqvcHx8WwMC2UQxsG8nAtpEkhAc20o5IU5adX8JvqTn8sv0gi7YfrHL2EUBUMz+GtjcD94iUaMKDfjedQNZm8+y/1R9AxbFDrLHdYdhfoeNY9YuReqGJJgWA7du3s2XLFsaOHcuGDRusLscz2GzmL852o2DbHFjyCuxeZHYY3jATEgdA/z9ByoXgG0BYoC9jusUxplschmGwLbOABduyWLAtm2Wph0jPLWbmqn3MXLUPgFaRQQxsE+kMNzEhCpZy5jLzilm6K4ffUg/x266cEw6F+vl4cVbrCIa2j2Jo+2g6xoacOOxAWTFs/tJshdmzuPL2xAFmiGl3jga+E8sozHiwv/71rzz77LMsXrz41BtL3dhskDLGvBxYB0tfhfWfwd6l5iUgDLpeDj2ugZZ9wWbDZrOREhtCSmwIfxrWlqLSclamHWbxzhyW7Mxh3b4jpOUUkZZTxMfL9wJm/4Q+rSLo27o5fVs1p210M41tIydlGAZpOUWs2nOYZamHWLorh905RVW2sdkgpUUIg9tFMaxDNGe1jqh+GgHDMFth1n5otsIcPXTsCbyh4wXQ/zZoNVghRiynMOOhvvjiCzp06ECHDh0UZhpaXHe4dBqc8xgsfxPWfAh5+2DFW+Ylsh30GA+dxsFxo50G+fkwtH00Q9ubZ3nkF5exfPchFu/IYcmuHDYdyGN3ThG7c4qcLTdhgb70Tgqnb+sI+rRqTreEMIL99c+4KSssKWftviOs3nOEVWmHWb33CIeOO2UazKzRJT6U/smR9E+O4KzkiBMPHR0vextsnAUbZsHBrZW3hyaYZyf1mgChcQ2zQyKnQX1m3LSfyEcffcSNN97Izp07SUhIAOCWW25h2bJlLFq0iKeeeor3338fb29vCgoKKCsr47777uORRx6p9vnc+b1wOXY77F4Iaz4ym+XLjvtVHNkOUi6AjhdCy34nHQE1t6iMVXsOsyLtECvTDrNm7xGKy+xVtvGyQbuYZnRLCKdbQijdWobTOS5Uk/V5qOKyCrZm5LMxPY/1+3NZs/cIWzPysP/uf3E/by86x4dyVnIE/ZMj6Ns6grDAk4x9ZK+A9DWwY575N5t53GFpbz/zEFLv66HdueCt8CyNQx2Aj+OpYcYwDHr27MnQoUOZOnUqjz/+OG+88QZLly51hhuHt99+mw0bNqgDsBVK8mHTl+av3NSFUHHcL+bgaGgzAloPheSh0Dz5pM31ZRV2NqXnsTLtsPPy+w7FYJ590j6mGd1bhtEpLpSU2BA6xoYSEXySX+LicgpKytl8II8N+3PZsD+Pjem5bM8qqHJ2nENCeCA9k8LpndScXknhdIkPPfWs7/mZsPMnM8Ds/KnyEBKYYyq1GWkeKu14gXnYVKSRqQPwmTCMqr+kG4tvUJ2OO9tsNp544gmuuOIK4uPjefHFF1m0aNEJQUYs5h8Cva41L8V55hfH1m9h2w9QmA3rPzUvAKEtzVDTahDE94bojlV+Bft6e9EjMZweieHcNCQZgKy8Ytbvz2Xdvlzn8mBBCVsy8k8YHyQ6xJ+OsSF0jA0hJTaUjrEhtIkOJshP/w1YqbCknB1ZBWzLzGe7Y5lZcMIZRg4RwX50iQ+lS3wYPRPD6JXUnBahp/gBYrdD9hbY+1vl5dCuqtv4h0Kb4dB+NHS8CIIi6mkPRRqeWmZ+3xpRWghPxjd+oZPTwS+4zg/r3bs3Gzdu5IcffmD48OGn/fJqmWlkFWXmeDWpCyF1EexfaY6YejyfQLM/TnxviO8JMZ0gsj341TyisGEYZOaVsG7fEdbvz2XzgXy2Zuax91D1X4wAcWEBtIkOJjkqmOSoZrSJDqZNVDAJ4YH4eOsU2/pQVmFn/+Gj7M4pJC2niN05hew+WMj2rAL2HT75Z+MILl0TwugSH0pcWMDJxyYqLzGDS8YG83BRxnrIWGeOaF2FDeJ6mIeQ2p1jdlT31jQc4jo8rmXm1Vdf5dlnn+XAgQN06dKFF154gaFDh1pdluW+//57tmzZQkVFBS1atLC6HKkLb19IHmZewAzRe5aap3nvW2H2XyjNr/wV7WSD5q3MVpuoDhDRxrwe3grCErH5+BEbFkBsWCyju8Q6H1VQUs62zHy2ZuSz5UAeWzLy2ZqZz5GiMg7kFnMgt5hfd+RUKdHX20ZCeCAtmwcdWwaS0Ny83rJ5IC1CA/DWmVWAGVYy88z3Mf3IUdKPmMu0Q0Wk5RSy7/DRag8POUQ186d9TDM6tGhG+xYhdGgRQvuYZjSv6dBgRTnkHzBbVw7thJyd5nrOTvO6vfzEx/gGm+MgJfY3T6du2RcCw+vnDRCxmMu3zHzyySdMmDCBV199lcGDB/Paa6/xxhtvsGnTJpKSkk75+Dq3zLjJYaZVq1YxYsQIXnnlFT7++GOCgoL49NNPT/vl1TLjYux280tp/ypIX2We/p29pWq/ht+zeUFIPIQlQLMYCI6BZi3MOXGatTh2PcY8fODXDGw2DheWsutgIbuyC0g9WMiu7EJSDxaSmlNIabm95tfCnIMqOsSfmBB/okMCiAl1rPsTExJATIg/EcF+hAf50szfxy1HOi4sKSenoJTsghIOFpSQU1DKwWPrBwtKzCB4pJis/OITOuH+XoCvF60igmkdFUTryGCSIoNoF22Gl4hgP/MzL8mFokNQeBCKco5dDprXc/dB3n7I3Q8FGeZ8YTW+WDjEdoMWXc1lbFeI6aLOu+JWPKoDcP/+/enduzf//e9/nbd16tSJSy65hClTppzy8Z7YAXj37t0MHDiQu+66i8mTJ7Ny5Ur69evH8uXL6dOnz6mfoBru+l40OYUHzVCTvQWyt8Lh3XA4DY7sgfKaD1ecwOZl9ufxD4OAULO/hGPpF4zh409BuTe5ZV4cLvXmUImNnGIb2Uchs8ggoxCOGj5U4EUFXtjxwm54UYEN+/G3HVu3eXkR5O9HcKAfIf6+hAT6ERrgQ6CfD4G+Xvj7ehPo60WAr3k9wM+HAF9vfL298PGy4e1lq7r09sL72CizdruB3TCwG2BwbN0OdsOgtAJKyysoKa+guMyg5Nh6SblBSVkFRaXlFBaXUlhSRlFJGYXFpRSVlFNUYt5WXl6BDQMvDOfSCzu2Y9d9bRX4UY4fZQR4VRAT5EVUIEQF2ogIMIgMsBERYCPC304wxdhKC8xWOMeyJP/YMs8MMUbFKT6443j5mC1ykW0hoq25jGxrttiFJmjsF3F7HnOYqbS0lJUrV/LAAw9UuX306NE1jp1SUlJCSUnlDMZ5eXkNWmNjO3ToEGPGjOHiiy9m8uTJAPTp04exY8fy0EMPMWfOHIsrlAYVHAXBQ6D1kKq3G4bZofhwGuSnQ0HWsUumeXtBJhQcW1aUmL/qi3PNy++7UgA2IOTYpeWJd8PpdK2wA4XHLu7A+9ilLkqPXap5T2vNL8RsPQuKND/voEjzEppgtrqFtjSXwTGaNkDkGJcOMwcPHqy2P0iLFi3IyMio9jFTpkzh8ccfb4zyLBEREcHmzZtPuP2LL76woBpxGTabeQipWczJtzMMKDtqtgQU5x1b5prLknzztrIiKC82O5KWF/9uvfS460fNQyNGhRmO7BXHrdvNpVGBYT/uYtgx7HYMgGMtKZXrlTUax274fbOx47rt93dW0whh+/3SVvU+G2DYvMw7bDZsNi+weWGzmS1JjqXXsds5bltsXuYzePuBj5+5rHLxBR//ynVvf/BvZnby9wsxl/7NzMN9fsFmK1lQJARGgK9aRkXqyqXDjMPvj7UbhlHj8fcHH3yQSZMmOa/n5eWRmJjYoPWJuA2bzTwbyi8IQmJPvX19vCTVZg0RkXrj0mEmKioKb2/vE1phsrKyajx7x9/fH39//8YoT0RERFyASx9w9fPzo0+fPsydO7fK7XPnzmXQoEEWVSUiIiKuxKVbZgAmTZrEhAkT6Nu3LwMHDmT69Ons2bOH2267zerSRERExAW4fJi56qqryMnJ4Z///CcHDhyga9eufPvtt7Rq1crq0kRERMQFuHyYAbjjjju44447rC5DREREXJBL95lpLC4+bmCj0HsgIiLuqkmHGV9fc+SvoiILpi9wMY73wPGeiIiIuAu3OMzUULy9vQkPDycrKwuAoKAgt5w/5kwYhkFRURFZWVmEh4fj7V3XIU9FRESs1aTDDEBsrDlwmCPQNFXh4eHO90JERMSdNPkwY7PZiIuLIyYmhrKyMqvLsYSvr69aZERExG01+TDj4O3trS90ERERN9SkOwCLiIiI+1OYEREREbemMCMiIiJuzeP7zDgGg8vLy7O4EhEREaktx/d2bQZ19fgwk5+fD0BiYqLFlYiIiEhd5efnExYWdtJtbIaHj2Nvt9tJT08nJCSk3gfEy8vLIzExkb179xIaGlqvz+0KtH/uz9P3Ufvn/jx9H7V/p88wDPLz84mPj8fL6+S9Yjy+ZcbLy4uWLVs26GuEhoZ65B+pg/bP/Xn6Pmr/3J+n76P27/ScqkXGQR2ARURExK0pzIiIiIhbU5g5A/7+/jz66KP4+/tbXUqD0P65P0/fR+2f+/P0fdT+NQ6P7wAsIiIink0tMyIiIuLWFGZERETErSnMiIiIiFtTmBERERG3pjBTS7t37+bmm28mOTmZwMBA2rZty6OPPkppaelJH2cYBo899hjx8fEEBgYyYsQINm7c2EhV190TTzzBoEGDCAoKIjw8vFaPueGGG7DZbFUuAwYMaNhCT9Pp7J87fYaHDx9mwoQJhIWFERYWxoQJEzhy5MhJH+Pqn9+rr75KcnIyAQEB9OnTh0WLFp10+wULFtCnTx8CAgJo06YN06ZNa6RKT09d9m/+/PknfFY2m40tW7Y0YsW1t3DhQsaOHUt8fDw2m43PP//8lI9xt8+vrvvoTp/hlClT6NevHyEhIcTExHDJJZewdevWUz7Ois9QYaaWtmzZgt1u57XXXmPjxo385z//Ydq0aUyePPmkj3vmmWd4/vnnmTp1KsuXLyc2NpZzzz3XOWeUqyktLeXKK6/k9ttvr9Pjzj//fA4cOOC8fPvttw1U4Zk5nf1zp8/wmmuuYc2aNcyZM4c5c+awZs0aJkyYcMrHuern98knn3DPPffw0EMPsXr1aoYOHcqYMWPYs2dPtdunpqZywQUXMHToUFavXs3kyZO5++67mTlzZiNXXjt13T+HrVu3Vvm82rdv30gV101hYSE9evRg6tSptdre3T4/qPs+OrjDZ7hgwQLuvPNOli5dyty5cykvL2f06NEUFhbW+BjLPkNDTtszzzxjJCcn13i/3W43YmNjjaeeesp5W3FxsREWFmZMmzatMUo8bTNmzDDCwsJqte3EiRONcePGNWg99a22++dOn+GmTZsMwFi6dKnztiVLlhiAsWXLlhof58qf31lnnWXcdtttVW7r2LGj8cADD1S7/d/+9jejY8eOVW679dZbjQEDBjRYjWeirvv3888/G4Bx+PDhRqiufgHG7NmzT7qNu31+v1ebfXTnzzArK8sAjAULFtS4jVWfoVpmzkBubi4RERE13p+amkpGRgajR4923ubv78/w4cNZvHhxY5TYaObPn09MTAwdOnTgj3/8I1lZWVaXVC/c6TNcsmQJYWFh9O/f33nbgAEDCAsLO2Wtrvj5lZaWsnLlyirvPcDo0aNr3J8lS5acsP15553HihUrKCsra7BaT8fp7J9Dr169iIuLY9SoUfz8888NWWajcqfP70y542eYm5sLcNLvPas+Q4WZ07Rz505efvllbrvtthq3ycjIAKBFixZVbm/RooXzPk8wZswYPvjgA3766Seee+45li9fztlnn01JSYnVpZ0xd/oMMzIyiImJOeH2mJiYk9bqqp/fwYMHqaioqNN7n5GRUe325eXlHDx4sMFqPR2ns39xcXFMnz6dmTNnMmvWLFJSUhg1ahQLFy5sjJIbnDt9fqfLXT9DwzCYNGkSQ4YMoWvXrjVuZ9Vn2OTDzGOPPVZtZ6zjLytWrKjymPT0dM4//3yuvPJKbrnlllO+hs1mq3LdMIwTbmtIp7OPdXHVVVdx4YUX0rVrV8aOHct3333Htm3b+Oabb+pxL2rW0PsH1n6Gddm/6mo6Va1Wf36nUtf3vrrtq7vdVdRl/1JSUvjjH/9I7969GThwIK+++ioXXngh//73vxuj1Ebhbp9fXbnrZ/jnP/+ZdevW8dFHH51yWys+Q58Ge2Y38ec//5nx48efdJvWrVs719PT0xk5ciQDBw5k+vTpJ31cbGwsYCbVuLg45+1ZWVknJNeGVNd9PFNxcXG0atWK7du319tznkxD7p8rfIa13b9169aRmZl5wn3Z2dl1qrWxP7+aREVF4e3tfUIrxcne+9jY2Gq39/HxITIyssFqPR2ns3/VGTBgAO+//359l2cJd/r86pOrf4Z33XUXX375JQsXLqRly5Yn3daqz7DJh5moqCiioqJqte3+/fsZOXIkffr0YcaMGXh5nbxhKzk5mdjYWObOnUuvXr0A8zj5ggULePrpp8+49tqqyz7Wh5ycHPbu3Vvly78hNeT+ucJnWNv9GzhwILm5uSxbtoyzzjoLgN9++43c3FwGDRpU69dr7M+vJn5+fvTp04e5c+dy6aWXOm+fO3cu48aNq/YxAwcO5Kuvvqpy2w8//EDfvn3x9fVt0Hrr6nT2rzqrV6+2/LOqL+70+dUnV/0MDcPgrrvuYvbs2cyfP5/k5ORTPsayz7BBuxd7kP379xvt2rUzzj77bGPfvn3GgQMHnJfjpaSkGLNmzXJef+qpp4ywsDBj1qxZxvr1642rr77aiIuLM/Ly8hp7F2olLS3NWL16tfH4448bzZo1M1avXm2sXr3ayM/Pd25z/D7m5+cb9913n7F48WIjNTXV+Pnnn42BAwcaCQkJLrmPdd0/w3Cvz/D88883unfvbixZssRYsmSJ0a1bN+Oiiy6qso07fX4ff/yx4evra7z55pvGpk2bjHvuuccIDg42du/ebRiGYTzwwAPGhAkTnNvv2rXLCAoKMu69915j06ZNxptvvmn4+voan332mVW7cFJ13b///Oc/xuzZs41t27YZGzZsMB544AEDMGbOnGnVLpxUfn6+898YYDz//PPG6tWrjbS0NMMw3P/zM4y676M7fYa33367ERYWZsyfP7/Kd15RUZFzG1f5DBVmamnGjBkGUO3leIAxY8YM53W73W48+uijRmxsrOHv728MGzbMWL9+fSNXX3sTJ06sdh9//vln5zbH72NRUZExevRoIzo62vD19TWSkpKMiRMnGnv27LFmB06hrvtnGO71Gebk5BjXXnutERISYoSEhBjXXnvtCaeAutvn98orrxitWrUy/Pz8jN69e1c5LXTixInG8OHDq2w/f/58o1evXoafn5/RunVr47///W8jV1w3ddm/p59+2mjbtq0REBBgNG/e3BgyZIjxzTffWFB17ThOQ/79ZeLEiYZheMbnV9d9dKfPsKbvvOP/f3SVz9B2rGARERERt9Tkz2YSERER96YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gREbdSUVHBoEGDuPzyy6vcnpubS2JiIv/4xz8sqkxErKIRgEXE7Wzfvp2ePXsyffp0rr32WgCuv/561q5dy/Lly/Hz87O4QhFpTAozIuKWXnrpJR577DE2bNjA8uXLufLKK1m2bBk9e/a0ujQRaWQKMyLilgzD4Oyzz8bb25v169dz11136RCTSBOlMCMibmvLli106tSJbt26sWrVKnx8fKwuSUQsoA7AIuK23nrrLYKCgkhNTWXfvn1WlyMiFlHLjIi4pSVLljBs2DC+++47nnnmGSoqKpg3bx42m83q0kSkkallRkTcztGjR5k4cSK33nor55xzDm+88QbLly/ntddes7o0EbGAwoyIuJ0HHngAu93O008/DUBSUhLPPfcc999/P7t377a2OBFpdDrMJCJuZcGCBYwaNYr58+czZMiQKvedd955lJeX63CTSBOjMCMiIiJuTYeZRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm7t/wGi7Y5FRrg9wgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "ax.set_title(\"Mehrfachplot\") # Titel\n", + "ax.set_xlabel(\"X\") #x-Achsenbeschriftung\n", + "ax.set_ylabel(\"Y\") # y-Achsenbeschriftung\n", + "\n", + "ax.plot(x, xQuadrat, label=\"$x^2$\") # label: Eintrag Legende, versteht auch LaTex!\n", + "ax.plot(x, x**4, label=\"$x^4$\") # label\n", + "\n", + "ax.legend() # Zeige Legende\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**b)** Kopieren Sie das Grundgerüst und ersetzen sie die x-Werte durch das oben definierte array `t` und die y-Werte durch die errechnete Bahnkurve. Wählen Sie auch hier einen geeigneten Titel und Achsenbeschriftungen." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:21:24.775267Z", + "start_time": "2019-11-01T10:21:24.689518Z" + } + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**c)** Variieren Sie nun die Anfangsgeschwindigkeit. Erstellen Sie zwei Kurven mit verschiedenen Bedingungen (z.B. $v_0 = 10$ und $v_0=20$). Vergleichen Sie die Kurven miteinander, indem Sie diese in einem Diagramm darstellen. Benutzen Sie angemessene Beschriftungen!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-11-01T10:21:24.776711Z", + "start_time": "2019-11-01T10:21:24.023Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "latex_envs": { + "LaTeX_envs_menu_present": true, + "autoclose": true, + "autocomplete": true, + "bibliofile": "biblio.bib", + "cite_by": "apalike", + "current_citInitial": 1, + "eqLabelWithNumbers": true, + "eqNumInitial": 1, + "hotkeys": { + "equation": "Ctrl-E", + "itemize": "Ctrl-I" + }, + "labels_anchors": false, + "latex_user_defs": false, + "report_style_numbering": false, + "user_envs_cfg": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/S1/ExPhyI/ha3.py b/S1/ExPhyI/ha3.py new file mode 100644 index 0000000..d2cca62 --- /dev/null +++ b/S1/ExPhyI/ha3.py @@ -0,0 +1,98 @@ +""" + "# Hausaufgabe Blatt 3\n", + + "## Gleichförmig beschleunigte, geradlinige Bewegung - Revisited\n", + + "In dieser Aufgabe werden wir die Bahnkurve eines gleichförmig beschleunigten Objektes in einer Dimension berechnen und dieses mal auch visualisieren. Die Position $x$ zum Zeitpunkt $t$ ist, wie auf dem Blatt 2, gegeben durch folgende Gleichung:\n", + "\\begin{equation*}\n", + "x\\!\\left( t \\right) = x_0 + v_0 t + \\frac{1}{2} a t^2 \n", + "\\end{equation*}\n", + "wobei $x_0$ und $v_0$ die Anfangsposition und -geschwindigkeit sind und $a$ die konstante Beschleunigung, die auf das Objekt wirkt. \n", + "## 1. Numpy Arrays: Linspace\n", + "Anstelle, dass wir die Einträge in numpy arrays \"per Hand\" definieren, können wir eine nützliche Funktion verwenden. \n", + + "**a)**", + "Machen Sie sich mit der nachstehenden Zelle vertraut. Verstehen Sie die Syntax?" +""" + +import numpy as np + +x = np.linspace(0, 1, 5) + +print(x) + +""" + "**b)** Erstellen sie ein numpy array für die Zeit `t` + indem sie `np.linspace()` korrekt verwenden. + Dabei soll gelten $t_0 = 0$ + und $t_N = 5$ mit der Anzahl der Einträge $N = 50$." +""" + +t = np.linspace(0, 5, 50) + +""" + "**c)** Benutzen Sie die in ha2 Aufgabe 2 definierte Funktion `printBahnkurve()` + um sich nun die Bahnkurve für das gerade erstellte array `t` ausgeben zu lassen. + Verwenden Sie die Werte $x_0=3$ und $v_0=10$ wie auf Blatt 2." +""" + +def printBahnkurve(x0, v0, t): + g = -9.81 + x = x0 + v0 * t + 1/2 * g * t ** 2 + print(x) + +x0 = 3 +v0 = 10 + +printBahnkurve(x0, v0, t) +""" + + "## Return\n", + "Bisher hat unsere definierte Funktion lediglich einen `print()` Befehl ausgeführt. + Wir wollen nun, dass unsere Funktion einen Wert zurück gibt. + Dadurch kann der Wert in einer Variablen gespeichert und somit weiterverarbeitet werden. Dazu verwenden wir das `return` Statement. \n", + + "**d)** Betrachten Sie die folgenden zwei Funktionen. Beschreiben Sie kurz (1-2 Sätze), was hier geschieht. " + +""" + +# Funktion nimmt ein Argument und gibt es wieder zurueck +def identity(x): + return x + +# Funktion nimmt ein Argument und probiert das Quadrat dieses zurueckzugeben +def square(x): + return x**2 + +# Weise dem Namen 'id2' den Rueckgabewert der Identityfunktion mit dem Argument 2 zu. id2 = 2 +id2 = identity(2) # definiere id2 über Zugriff auf identity + +# Weise dem Namen 'square2' den Rueckgabewert der squarefunktion mit dem Argument 2 zu. square2 = 4 +square2 = square(2)# definiere square über Zugriff auf square + +print(id2, square2) # Ausgabe der Werte + +""" + "**e)** Schreiben Sie eine neue Funktion, + indem Sie den `print()` Befehl in der Funktion `printBahnkurve()` durch das `return` Statement ersetzen. + Wählen Sie einen geeigneten Namen für die neue Funktion. " +""" + +def returnBahnkurve(x0, v0, t): + g = -9.81 + x = x0 + v0 * t + 1/2 * g * t ** 2 + return x + + +""" + "## Visualisierung\n", + "Da Sie nun dazu in der Lage sind, + viele Datenpunkte zu erzeugen, + wollen wir als nächsten Schritt die berechnete Bahnkurve in einem plot mithilfe von `matplotlib.pyplot` visualisieren. `Matplotlib` ist eine beliebte und sehr vielseitige plot Bibliothek, + die es uns ermöglicht Daten zu visualisieren. Wer einen Eindruck davon gewinnen möchte, was alles mit `matplotlib` möglich ist, kann ja mal [hier](https://matplotlib.org/3.1.1/gallery/index.html) vorbeischauen!\n", + "Wir haben folgendes Grundgerüst vorbereitet, in dem die Funktion $f(x) = x^2$ beispielhaft geplottet wird." +""" + + + + diff --git a/S1/ExPhyI/scores.txt b/S1/ExPhyI/scores.txt new file mode 100644 index 0000000..d1c8797 --- /dev/null +++ b/S1/ExPhyI/scores.txt @@ -0,0 +1,8 @@ +1. 20 +2. 19,5 +3. +4. + +MAX. 240 +GRENZE. 120 + diff --git a/S1/ExPhyI/Übungsblatt_1.pdf b/S1/ExPhyI/Übungsblatt_1.pdf new file mode 100644 index 0000000..0713333 Binary files /dev/null and b/S1/ExPhyI/Übungsblatt_1.pdf differ diff --git a/S1/ExPhyI/Übungsblatt_2.pdf b/S1/ExPhyI/Übungsblatt_2.pdf new file mode 100644 index 0000000..598f6d6 Binary files /dev/null and b/S1/ExPhyI/Übungsblatt_2.pdf differ diff --git a/S1/ExPhyI/Übungsblatt_3.pdf b/S1/ExPhyI/Übungsblatt_3.pdf new file mode 100644 index 0000000..f9d2f45 Binary files /dev/null and b/S1/ExPhyI/Übungsblatt_3.pdf differ diff --git a/S1/ReMe/RM_WS2425_HA1.pdf b/S1/ReMe/RM_WS2425_HA1.pdf new file mode 100644 index 0000000..c186f5b --- /dev/null +++ b/S1/ReMe/RM_WS2425_HA1.pdf @@ -0,0 +1,1034 @@ +%PDF-1.5 +% +8 0 obj +<< +/Type /Metadata /Subtype /XML +/Length 14669 +>> +stream + + + + + + + + Adobe PDF Schema + pdf + http://ns.adobe.com/pdf/1.3/ + + + + Trapped + Text + internal + Indication if the document has been modified to include trapping information + + + + + + XMP Media Management Schema + xmpMM + http://ns.adobe.com/xap/1.0/mm/ + + + + DocumentID + URI + internal + UUID based identifier for all versions and renditions of a document + + + InstanceID + URI + internal + UUID based identifier for specific incarnation of a document + + + VersionID + Text + internal + Document version identifier + + + RenditionClass + RenditionClass + internal + The manner in which a document is rendered + + + + + + PRISM Basic Metadata + prism + http://prismstandard.org/namespaces/basic/3.0/ + + + + complianceProfile + Text + internal + PRISM specification compliance profile to which this document adheres + + + publicationName + Text + external + Publication name + + + aggregationType + Text + external + Publication type + + + bookEdition + Text + external + Edition of the book in which the document was published + + + volume + Text + external + Publication volume number + + + number + Text + external + Publication issue number within a volume + + + pageRange + Text + external + Page range for the document within the print version of its publication + + + issn + Text + external + ISSN for the printed publication in which the document was published + + + eIssn + Text + external + ISSN for the electronic publication in which the document was published + + + isbn + Text + external + ISBN for the publication in which the document was published + + + doi + Text + external + Digital Object Identifier for the document + + + url + URL + external + URL at which the document can be found + + + byteCount + Integer + internal + Approximate file size in octets + + + pageCount + Integer + internal + Number of pages in the print version of the document + + + subtitle + Text + external + Document's subtitle + + + + + + + pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0 + + 1.5 + application/pdf + + + + + + + + 2024-11-12T10:03:46+01:00 + + + + + Text + + + + + de-1901 + + + 2024-11-12T10:03:46+01:00 + 2024-11-12T10:03:46+01:00 + 2024-11-12T10:03:46+01:00 + LaTeX with hyperref + uuid:b188dc9b-bbbb-4626-bf7f-262bb188d7f7 + uuid:267f7595-fd1d-4133-b9b1-d7a88d7fd1dc + 1 + default + three + 1 + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +endstream +endobj +10 0 obj +<< +/Length 2644 +/Filter /FlateDecode +>> +stream +xڵY[۶~_GҧnƱ&y -Tn;)Rb/$ s''g'|'_4XfMΗI1\*E}Uq*ә=De9JӤ< \)5; llڶVzDK_VM[(h槂LOPڶW~Sh.O]y}swS\r62cHOg]j۫^" 6QQŻt.f4#77 Oz<3FokFbubΫiY|v/Q# -B>_( FcX\Ib6&.^J \@& )*fK.''gITc3aY _Z2$D3iD&kz6esqft +:I~29Uj7Zf.um*9a0iDv݆pSkG8U_a} +_1TXu,`|13aKpJ qP(0,;6<:e7(MV\Vw,G@V'W*?rӒ=B0XT"ڔ{\u+Xu6Or時8Pj8Ccp%q09 v q>gLnUivw9t>8{[G2c~IgY3R66T&V +ȉaH;NVAWueƌF8sPlMZC 95FWۦ^bcu f4I϶|XsQ-?֗%IK,t/*w*(%3~|,hü,=YmZ4C{k#5Ȇm,L,]) n`F:E[)U(hPyyِ,p؍/(y b>TNUtIMb{6__kz*VN&_US0YfkFzk qveA[X14kl@ =Iч P`Ȁa!>Lgr` Q;XŠZ}I>s@uь1G{@xQ&& nE궈q[H]襘2[@̺~oL0s7 ȪK0Y]CYKz&,=yFbע섊"ˀ +6^KCJ*Jl \ͶnOW:bجUN)MZ|jSttWNhWldž:Nvd&XRff>a&)rr;k+ l۬s;Nn;R/pUtB.*f~Kw|(w4g!p. J8̊FbًSನhj1*v^N)gC, 0%H舓>M ijtY^_"eis<űMz.CG"3luk@Wu.;5E RbniG|<$bi{h5 z
CDrG);`AkF +|eUD _&=6zKXh(HL8XIh ۟t##nCO!\*7B8^Lu(12B>,uzx}IWu0* !kz\y_*vrQR'2UKl ”@6Ӂi6@]8kJ3CMS8_# fz/U&fBؖi&)T 7}Lp8tGq0.?tqa]+bcsKz]]_B3a9TI xV4ɭz~>n7{IPHS o5э9@"Of1Q @|Ìj"^|.(*O[Q0t6v"۵>O|[;:o`_5 &Bro Nw>Cųp?y{T97|BT8-?@S7Y!kz8xЮ{5 fnXh4dZ PQm-TMY$ذRzSm ُ۲ WZ4#Xq0\Xy+VӺTKecUfIWEF{.򦙴 :.I}Pɒ*  %/Ґrl.bT ĵ; +endstream +endobj +48 0 obj +<< +/Length1 1579 +/Length2 10508 +/Length3 0 +/Length 11541 +/Filter /FlateDecode +>> +stream +xڍPZ-Kph ![C[܃kp'<̝-kj*re5FQ3 H +lWfe3!QQ[؂%G99[a!$.o`{-`ca!؉ t2(2 g$*q=:hLi D@NV@{"dv)6xWK>ffwww&3Bnb P9@f?J(@ƄDPrK6wq:o[+S󛋫 v;@MVd_ `ebwde3l[ق\<\@{? 7hfg@ +V9:Y9839[Q#a,io&ٻ8#n/dneofGfV YmDHY\,,,\<#aj?jr;X~n +럊FH3+S ? <z,ocaf`{[9bf %qIUKRL b0qXY8o ;ڛ֧7h^ZR1Y8YL߾X%f$jk/hges]]޶@ kkufu킨h,e2Sr1.5X4[+{2ꏧ?2y{>8 +<})-c{0 67 b}[G3ǟ,03ك]\oNHL,O`70x&Fol$dl +`6d0[a_Df0;; `vWL]ޞ??&d6l]FȝqoBpjO+k#|2m [^IeжD'gxvS' EHE_5l[!r]yД=VBT䑟f5L)\I.k t-HճK7d6ή-p"4^s '̿sQ&pWZ`)#8ZngLv >7puTx +|u4'?)\;Ie +I=emN3)k8"(M#X6l#/}"+\8h&Ȋ.=;?PII4JSj>D0I{*ͷVE(OH@q0Q*#ݹ ,DQ5 $eĝnz/̖ YJ +ULk5Xunnܘ(O;-F9!|gka=r(1SDjݟӥ95(f2 ZPgxĀz1c)u,ܧ@ICLgfL 9C7q~Ed;%Pe)Gzd0Z7Sg*R dx{ς%>x[;!@YclܣʾWܑRݪ ^kj.HXxy$;cϡDW|zEH(j㧇;{1Gл'R=(Ȋ>.k۟>3l ^4?(Y ]NiJZԂӚ`71AÜu +r@}jαxg%:01Zʆ-p>Acwa#[jdK'vX75^ՈF2qz l[mg(`ncػV!.APN1JcR9- ZS0g*{t YLD6o=ՌZ!heYN7(U;6ՆCe-78k㑀14U(Zf޳fr:ehҞf4J;-^l#6UlimԅtҚo QX?b6"iKQr}wX2{c3 g +̳&J/l:TyڸIšjAî_fEk,ĤB;4t`7;אك=7W;z^5 8^# T[?GYYnWQɩH4q;, KWil79]A o&c\ 3F4RWڭVdVݖdJ; kN' +! B }х5+a y晉 }1eΕ9,';lbByvBw9 4v$ +odnji:+AQX85ZE(͓ +Os>.;l/l|02>$1DN?]l=]}E W[b4r +"i +-uQ1u%ƙTC~îlV'@RZ5a+.zwLp9L7Na4Mqc,w1IV?[pISC0;(R',Wv$BAF;<+fb2Cx!NVea2)Mݱ&݉,G }`;Grq#=ԽaI?CXb+0J)q@fb.b 4{@ZsT}kcxCO#>" PB :_HV + 3r p;!iPOUEU[t>EM[0␏7K;7[=&_08K)ڐWZ>rlBRU(C |!{IB2=rYYp*Ef7eugJPтb=#ϥQE3x#7|V|0D$m~r:#*+%d/<WL4Kox3+!Wa l5Ǣe .j|6-H A9TN% ]"h#4j-RMlsΏIK"+S?tn4֭{lYTɐJ?D@ ))(y @pdϴL  Yle1ڭcFt\i6طh7;j'?q71%Fd߳,Jͩ,_m +34hV +s%'^s.InkOlifRU$; C!vi?=sDLHiMvC8š9AGNO< g΂V+⭹(3gfGG4i6vveDDZv2kn- 0ޣJc(9+p,AL+]F0@r-X=B!) %[}eiٵ/'ܿa!C(ayLnMEsDz>@+`{ +Jkq yYӞ<,K+(V8zI/Zn+ڃP`HU-9mz5Үv8@xdـ:zeiZ¹ɺѫ4&y'L UOu q`N5TJt<=j +k\_fd0}uۃKyD<=UԎ]G1ϓ&?f.{,^[ɓGW:FN%E/ :j _v%iiypʡOجO#[ɷFӶ/>'7ڶl9_ռzAz5S^P t-xKNA|_q7Ȗ["10J!G0u<Xk%ij|6_pVR|RVFRjP`k"&8GķZ tcI+]., sY#G?K{' %8HJǯlWX!4*FS#Qp`Rwh}Zɿ"), TGz4f MX8=FVeL.2hէs(t4bT˙@6"uȞ)/|ql2ɧc2 V'x"&#pȶ3ODnl[bԡ&!sҡDXbbO'g>4ysxDݐBevO?*6 }X[rCM5Mq1ROF4l;LHwkDG ¬צ&CTtMgL GN5t=vE-g~fɲug OMI,kP_Q T?*ɋk8&B$PNiAFUD<}&V%ҒE%P(zm_=Z9?OaW_SRƋ*X9 ˕{x :4{ s~Gd&ES=yQ8G3Jn"٥r,kd!Ogl@հ_|jğmRd(lGJgel뺫H5( +wR{$"+˫@v9K*qE:KwǯJ|-&mWhx=<5u?EXH5\ 4Qѫę*%$e"S@p]\ Hk 3fWf{ ܾY?x>UIO8n[|!Rwx2o@n?_yF| ;R q%D'٬3+9N;eCi~I'Al{|$" jU=!9 i@2C5na*m8mfG흑}.k>( N4`gZ|ǧ2r\];bjuNmDdcaIpݹt, bj·\5pIysB6/QB[L54o͇NE›ۜD5q?$>;3YH +:Q +/g7Y8Ua|Oc40F^9 xX6I[Z݂%^NX>3O)YV* 8…cu EtsH):"W(cЭ>ߔRmq. =_gWݥ/ דc)F;O΃$W WЦ~9Pd(b0 AQU>Pfo(fwc]Cd +'65 _*"Cg&jk*nƍh 4b +x]ilb +>Hfזq~)׈W&ʁ,G[4^!b8Rir2 Qm.FµP9ań^z˘S HB-pp:r`!fCƯй;3vm)Fw2Y~~0>E#x]:ϴJ{ գzp$t2xnwƻ1]'v9(R'h' 3rLC&P"y/ BWyޛ .^:=^%Mq*D6l8pc6?-#! ]vSkgՆ#ۊoN(VOlKGrN>̺~?u;\M{ Ѻs=ӯ+;^<=:xlyppYɅ0NyenOQM5+v",D3U*aƒ+؞E6ϸeRVi n,]Bxx+؁%{!êVӻx`sFjV-ضwAu |6<2>9IYkٵTZ +`\u6uV}^e[BSD^9za_{bޜ0{n>?طا,~@*_H-x(ަjHdT6)a|T5%,I9݃ۥ"2Gv%^$j]V%7l~XDŠbH\}8tˈRBHadzVYͭƉk/X7l9 /_,dقGO PF[7Yg1-nK8|՗=͓V)[<ؼ@Jv?*d)KU蚶HG4WcD W gP .j;US*ъQ&LqtHU 2e@TpApu?R |ϛWT$6r^E1StS ,lv]:6- C?G"5b[?,Ey*0ݏY_e`|907G̋r4!vLbb/3JA[N:Rq T QaW䴊#{=Vz + #С]BAf7dc~+n )$f)tL|2{q3ԙTEnd$"3* +IFI8/>TlK맇3Zl],(+13O_Lb\l}{/Z(Yk=[ֶp!ނ +nAD]RЋdIg5 ?W7,AjNyмÎ,תKÍ[9c55ߦz+*nPhl:$]}-$rYH+2& a͇(= i+*M.X1W/uqMi%^SvļTlm}wOXϺY!uS*u -_,x7b_z`?~́AKY֤~yv곫*(s\*;:#z`dS è)zБxYI)8ff߅77%sH6 Eڢ/ZST#WK)(<Ӄ11) kR5p)ɶC :I=9n*dv,cJ~t!,ZG V*1v{㣨;[#?:pEKkI6GPd_ėy:U O ze\#-ZsTbhV~Bɫ0Y%桍nmը=<8h2ӗFq`8;1T-3=I32q7$|Ki߽ #[qd_ȳ SWd*ԁ< MaǮ.|yU-ؑ[\,يv7ĆGJ\,1#RU ~wGX278 枇z_ýK +h!jTË jJX`k';R~xo,ɵ1< *:c BU;gR4Ch<4 O_a"s5n;g~v-c|aRgc > z1lšmQv08qndw0r`]h@'+lQpmk5y1"9rld|`lR\ \՜SNۗ f%*)Ͽ`0CCK<# >U +)2 |_E޳ɠO;=o&鈗i"n&>Q y[dDlSbTvۑ4<@B$v[>' C2c^z;XĥA5g)ls#dZik m4*D[]S6_ߘ\>ߥl ļ&٨xqe6 =͖~6-9aOs> +stream +xڍtT6)t(1H "ݭ C0"* H +tHK}{y}Yy}]{_fg5SE@Up( PR1@?(HnC9CC0\?JH(ucSnZ8ࡇ3$J$@ (7(=a-~CNȮpAP7upB 1(Z`" 0@@`P?RpJ;P^^^`w~^C9P'kd6g4~Bv/FB7g +w BuM+X//@+ ; \\p`stT5Q(^n vvGă=0g w`|3!H+ʝkF_inYnpqQS!}sNp5UW1fEDb qU ep݌Ao>hw'Bz@ ( 'w3#a @_V7 E} }&&<FSQ @ +%D0@LLD`؟F#XnHFݳpQ7ԅ8tKr;G_YWwGο?qC]ԍ 7b7v07rP;k#a0o. q1ٍ~i"an/ߍ N77 -7gI8aKh"0 !9曕 Q-7p&p3?$u@ Fro{[P7B85H9V5V*[¾b=lIU2CUK7?`'̶9n⤺y^]j5_?EVj]YdѱB1sSy=:BSBx`٘l{{tGRN +^$ع^Y<28DhtuSO=5W?7*ij1`Gܷ43Dy|4RkT % .)'ԝI#yC;Jq!(󼃓[C uRU\'s.%N|K^pzxz"+8?[jtCţ\fPн0?Zô͸;- +I.wMR`pئ3YU04[I^/=KF^Q6610]:!pI[Q+gGX \qnJQx,J\ΐѸJ;( Czx;gEn9kW +)x-v#x6 :.M݊rAw6Ƽ?O(B[-FTk%9ڈ NW^r 2,t ڃNep/r1;*ȒZ?W=y^Z=$.q)~*oqt2;wV[nKhgxM|uahJI]?ލ[W ٓcFR뒃2VcL[/oFn<-}-ܶx(1ITERɤ=oj4) J;pv $zogKӮEdrR2KOcFŧ鏤ʖ)r1϶NP]ֹz U?2a̚"c/.0Gx ;6Gis`ZJx}< -v}rph+\ƥ+QBiYߵZ1\|#G%*꜏f,nFZmYn]G!ɔ ߔ{q KʰV.iq+Mg~S8\}+t`י5Mm(Ǫ'69NC /W^dӾsg`q|=zQM1TxְM/fh^^%_i%8|Y ?zPT,nēDIvC2k[e<‰ )mnRb95p9,B)Es+g%{8q\ƟjryA@s+F1%A*9 +QB?1^!<}MII8"ý5D_$_ut]Q:JҖh= >xGlꛖKH%t +ל}ma[4z fX )q"AKo=T9)1QYgxrxG>@NZCA}YyF'%x<*>0BsOzs,U VIIUnm {84kъOy? T{YKVʓ{J9==VV4եwo$nXX=V6, bGGZUlY}ճb_ϒd[|굧qD2MYqiڥp8-Dە/Vse~YHXmZ@vd"yN pRمUIu 2;( 36 vN5%;׶/W*R/b#uwcWYaX=-2%P-Wʈt0'e %/-۶μ2/c;[ a=RQOQRL;#aw`1ћ>*>\Ւ`z~IPʐc3/VsJF|,wq= ?"}KI }`B.{ (?uJN M_77-۰JEB2U^Q>*սuI ӱuoZY?yce´\򠳾5Rf&ڨޥdWUv9c(#;r!ǩ΄:6fj?競+IVEUIT6O1 H>!kMޖM{8F&鸳BX+FT^6Gu9ZZq)_PkG +cY̸$ jL)B[څ3'8$3N689ԺPwR߱6Óu0Ukݍ:i5'K"iۧ)!dPF^$0l882Q,0<CcJRgjT(!80UWJ ^,&)OxLη0́faY<Nf{Gm`jY8nҒ󀺊XEM~0.UDNyY{6m +xOD6WiɱN Ǐd, Xcwt&iiv 5&^ojLϣߺ+逬;8 +%uGP$lE19lJHXn TV*0f!p8?!G3n[EpR-r6<|&6fa=HDh3!fal]bmryj]qJ#%[+5A t%yY&]Q+vP `_Ӊ8ley*:$G.T,:/rmIܭH<Í(~SHPU[d>=B72Vw)qā5bR*-NSڵ{(IfZjg嫘4)TgRfcJ$"Lҏqʍl2,T<:4 :W^Nh_mhOq/<;{6A`"J~'V/c +红c:*%?;@UvgT" +` fAE0/bR/kO3,ژiٌ_'ۯM~@/S UŨՁ\Da)ܷI@+_ǝ3@?Ȝ k),>?~ZyYYWsAFc>ҾRVJg`]8i[я4kb&x1)?#嘹G`%;u`%뀷N2#|yP!4`m0|@*KOblwP~֭=RmxҸ&wM.Xs;"zMStubM6lrEĹ T.h!瀮EdmlvJ |Oa +ۑk;Q.ꊾhf, `,wzrX@ok9h5RR>bط2c:+yԼ º9'|+-$5ɾ91f+ݴz,wZH2ӑ=y}?MM_YϦ8 +p@c>i$8&㗼?LJr}^߳"Jw#3 +_C\t5^{UhPAQ}εcϗdWL/vu'Al&xC +smejnvlDt/2x3[7* Rz'|)Ah|"fYI,} gi'vm7͈]%ʐجn䧚ɗcc;F YbzeB  : +˳ej:6ʐc8yʖeh.Rz,S1bR> +stream +xڍT64)"UiJ{ $A"U"];JT)Rބ/ze8 +Ẹ#Fpw{_m?DMa8Xl0 @$.&$.y`P'}N/3?$ p ;?$~h' A=߈ áNX3/= +0{迏co _Pb؇ч_dn5{ ;.+]?J/W"Շ?~+݇ T3_?t_wG p*f@_v_ +w#_W 6 +vʠ.k_.;r ðC:Tܡ_'(" +PcS{ou 69@:h 1AA!(u:[ *XnC +oaB`0o*\~Rſ:*Mvb.?ZhMSYJ0Κ*S VvU8ə[c>gQ]wd{6uutm2mY"d G)XޱψnmD/.RU1Ͱv,mZF o_ 1-vƫ"twsŅ,XFfiIw$xUQ, R2|TdT^e:"s+NZ~˾|'Vwieoˊ;[6!9K+Xi@6mړW=_EIdCTC$\\z:rE6g3!$5{;lLxSlDhk9'<&"#?_NEhXźYg;`zhzMґ(·M4$%fWTh,@k$[ވC旸qJui#qHgY$l^_v_Xz lْYt-{"d 䜴[k#sHBDoE( +y?0e Oِ1 +n쯻/v1xq}SM#y_k};-ED}Oko9 N9Gd6w4)h8>PU%rxxiÇ5  <=qUt e5~x| $(sXq}'fuS͊B [W|[t+$}07 %p4mSM( 2svXc"! +y܏ôbDYk)Gjg>gcލA|j r&'cWyϦo7CJ};RVP䛋Eeڸg_%iS\Aj 9 +m0IAFk"w pB ƮbO~J6-J9yBk['qˆ&Uv"w+w#I g~)~:oߩ+ŶHG8Pډ\h?JLV|3(Q}n)mQn[ەNgI )muqAW&Ŝg זg⥇6Wc8xA^=0>x|N8<~sղ*l{{;I-݂.`D #'#k AT6DS +iNQ?/0gR+6Rۻʪ,Jk^L!']CFX(?YOSS>\: AJL0/ayаQ2Caש& 눰%|x24ɵ.w+$ P@X`,/͚NZbHvUݽD*_ejX"\JUSE`Rl7-o76̍g̦9#@#2k*UI;֋"\n&uٗIC̲64,)mvrb>A7$ہ9˪]z *S],lA 38M<2'wʯ</)qbrf&DJђV Rꂕar]PKVQM~ G@txrOsX"s4:4m?"q5NHh&g?_s@DXrZAQ_fXSW'ťnmI;} I~(#qxG&oh٠5Rj}fиY@}%H%mip^X 2-?\UTA1X{ja2k-})#HHиE1ExwIEN^EWN*2!%EV V(qBwYsdEO/7W|H>bb첈 F0P6+<Կ\2ϴ{w~lϳi.7wGG9fNer?3{S@t';r+oj8gϑʟQZ;ՑvB2U 6Rꜫ{>i +i DA'/ZQTsbZ+)-EW̡٦dzTp Zu֓@uLJƑֱi{7inQ]h]ɩi1dfrG,99LB8[_,L!hŵC^+V$!"7OT\]J G cs"}ޅWц~j `n[ej^.~g)&'"53F"My#qY9`&ɜ{g>a^7ȘS);Q:f' .!U fэ"I|A'KU)ia={M ē@Tb^ח H keޚ +Cd%܃y3MRuK|B{I&rYBD0ʽ5T)%[ 0t0w)&Y]w6Oqbw#G]! VEgg*5ZvDOkx{9v5$ecEyjϜdk + ("VeRhJ0N4Lğl6کgrx$Lvļ +#I+y=Erv҇O무 A;'Zߓea3K%JzrAC;c|8<{)E3 D>yF&1tm?-tw &_A?;^dIJB otCT}ih s2\ح+j~c#|BiGZrcWrɮbwo ۬7f Ot?X,W#$4]wVgp"o|gKzl)^ZS6 8c70ږUwb5TMtT +oe 'bHns'U++uTwL& ?Qx ;e64+065؅'!ZɟK7UtH0+X #96.cP<2 +#>P2+1\tfhP`d!"Rc2Dhİ\'/bgFK]x0] }c AŌiNS~J+!a"-i?ngy{Vq/zx}#dF7yK_+@ջO,k;.X$_>xOiW,,>R) 4 2L̿_K%-Ǩ33H02%r.KkGZ[ђossٮ[Q* `/է7dp\<*`o>߃Ռ9OsKI"]69 =^@K4>9:*ؘ>N4FAԼ Dw)uh%t,%/PԷc,Cx-܋ss]'WI.a"{403|VqxGmQι2 LD-EsnF0S娍zekdVۍOZGϱ6 ӶH0J퇶t> +stream +xڍtTS.TtpC5I^Dz/BJ$tU:JAP@@PAޛtEsֽܻ+kyfޙwgۢl*($"550XX "ag7@`$Fpw4_Ew8)A1X& + p DLrG `Qa h +QH8]㎰w`+ w~.pw 4 DGp?JpI;`0^^^P^B`=8 ~ hA]& a ?~} g Dc3~ÿbý0)L*̱&ZmH'DȒөEA_;z +I,Ko4t꞉iX3{1$3x9S{y. ""tboD(d~4B'ɡ<9%U)>WWy}MhһrllnP Oo"'oq'GJdó78s72P8[]s(6?=`KKED;?Y6Ol'i:LrꍄF0q%q/gy+y;*فMM.L7N&,'V{Fj%<~GU[,77db:5APʹ3 U~{ +x)ڐXWH+OPQ!y@`uM/| oD@M31C_ڣ5U 8C!4ǝ7񥡏ߜHf֝຀p8iVb^WDYT% {d:-&EGo}&eX#grU_j6'VnZbfECA Ÿ6xl}\IЀC+¢/+/EÞՇm- +0د8_8>/vؿ}= 1dpI:c4si5CYPMt|W9"MA6!Z9N-1TAJLl:b._l+ +iFEobΘO?{RS &WGx(G _NԼIE+ruCvܹ[erV +t ?M ݯpU "* m D [Ugca2[z4ׯL@mr|!RSJMgkRLC +:0y&{vCGuTh8g(c#f٤Ukyjҙ_R{f.nnj. n8A hn{J]%C-Dӓ6#ՙUCVh22 uSrJR1tY=8:k%<Ȧl k^|z0^aMOFe|ɋn.g?})]y@0fW9`ܹ/9 +P +`e/heDz?T1 +H0?M"$w犺r:~(qf*&[%)zFU0*ww&{. +=2}wc@[?y*R2u*sږ3,ŀ .U/T_k mF?QKP$*Z9{dQ3pʟ"ϟHjqo돇NmoO0tim#=:ULfNzWkr-i+iFK)Xt=ƍ1.vo~ge80u}x #~byQu}b¶є!g蓓 +ElWk9{bȵͩNV?_5o/ғ{)'_v8V 48D L'C] FZjBzkqs re +t_[d-x(v?6q\C`{y7@]9e2c;$Vəj'ta4 ˒qy;ɱHp w'&?1O^I}儓;V1_fM盅$/UMs$516U* d:x-|rx/CC^B-ȼu!^[\,7y竘/_'cY~&!fb0`TkH/i%>|WX7I7a:I|-v)N.|4Pn5s¦J xFNM[YN?B"_Q], /Z\1RKU":_ ED@lœ% /:4J" +q'aeu%X鞇5{0F;5x8ΎCezTn9ޛ +/s]tIԆ^JJtj]yD=Gu]wĕzQGrH8ߖ͗Q:Yv{ N$V 锾Ŝ ݙzk FgWjSô_ +Ĉ=nu);w#avGJ+i{R@TWwof˲%s~]8"tGqܹhq`./V ?#jꆜb$4r|42rܨ;HyE(zu(g7KmIg+Wo9P<[3կ@jĮ/ ^lbujޙx6$zgFÞmԥ#1r +٪W? tV%8?1>MȊ3'-QUۻya!~@@I48Kۡp\GQы E=\,vKo(ЁJjtc]qʮ El߸YzR͉x.G͑'R OxTiw }| ^؝MX,?PB TgYk=[^DZJXzvȥʚ=iGo&'Ylb0c\yY]l:vT[ѷTtǧ㺩k#r1l,/hCQc)uBOSKO3N T "J=>L0-G./9My'Yz&H' :c96W8E{F24g`(!FTK47 O=nL!y!ZchlAge,xgR:# A46"ܮ[d1 KxZun `[\%˻/5殯r:/N%+JpT%*5rirxĜrh*;Z,;\6qj#Oo6> ^ԫ{1]cpέx<=YFCq̝^9c<7Yru :04f3_EjPE *jBy[d.,ıVp1&'!j@";*X&LȄ E:掿/GDHŽf/(W$JTWƥ^&iw5?*|ƳS +@6?sM]^Z}G}KwRݙ PJm@Yȫ5X?yN񍱪~Quk. ̨iro*p;rpP7= "V+{_T8"עt[0fUe@b:WXMf2_E *Xq%Ħȑ"@cd4;>.l%VڦVmqY_}q{w̛>,*|s"]#j,"+lq|Or +fF+ƪ22YJ6ιFR&eGCLR/p^Hpp ~`@xD'E|r 4f4\\/z KN ©89Xѽ.Ljw0vP4IB\m4@?3\c8a0+H9t:w6EbW+N&F}x蓜4(`e@"aܙ~uZ9oTdPN\Ο:! +sJKMD{m"ՐJݧn$7U3(27]ޘb$ϙMm"庣q[(w(?s8Zk[#W~T]3>q]]4rvۅP=Y 5$ƫENv+tCD*3$EuqeDz bhiks+V~ iNACWqj)WnWpҍ'LK{|uE7[]r艶?ҿ?e d N4H1iY.x#JvweW29Boda/'ɔ!~=SXcdz$nz]lFJ+eZ }g[LjnquXb-~1oᴧJ3yӇc%Ky,Y>0O"DB ٦A8o]i߯A]>8lg ꠦJt9r:-a2;?^O9Sڽ]Є)6U֮WJ4 k_>+IwK^u^<9])GʝG'*j2(?1ͤ$<)cYk\(i]/(XI2U2~P Z ęX˿p"֗u|}o9uFWRbNQ1v̍$_{v*-jc5u(Nd{Kމ^j SO)K!|r;m&yz$7(2}It7Q ,ȅ9|۵:~]!UB762w|.,ޮ +Y |pp}1w+Y᭑:BڣyAdYR AV0p%b:"[$h-U19 +ӗw +_ RI]P360aG,.i'0DV؝'qs[[thȝĿ:") +8P;Ie]3Nip$Љp쵻:Z?9ż4ޢ]OKï۱|62ooI#&%!~L`^y`zNRf1m'^;1Yo!{UTѧ&86:@Mv.}+ 1lg&_V%)ͯ;zs)X.yo!FNRn +F#U]J&/cHԇ%Moq5DAoY%T4}hE~ə ZWsufsHlˆt"$YRZ)>ܘ"`>_{ )e"}f:FpEWTM MML##XZiU>+8!.a>\AK7:[@4V{$a(.s{e Md0blBjw W> +stream +xڌt  +ǍmNضmۙضӤ1nvc7{|ZYk!'VT27۹13rD䔙,̰䪖.6aՁNΖvq|D\>Ү6&;77##흸Fn9z\<(ML\\lN&Fv9# G#%pqqf`pww7uw2秢[X@'7)௄F2%ZX:CW7sq7r>6&@; W;S9@EJGXZj`gheoe#{[#;OK;s  .KB 03KCCȍBJ3_)2ebv"@;gؿt|ݓZٻyYڙ+PJ?"$?4s t=L,2#_o{G@_K3 +7#X&& hnihh@c1^v6/"?',lce112mF?aKWOe3Y*%o1@!edc4xc< Ho6>c?jYZ9J},h,n4Ut1gZe6v@E{g˿ +5Z&c$f?637kŘFNNFM@lo]4z=z;{Gz3{'ؿ:`b0A? q8 Ab0HA,?û].}x>+q~xW>)AT V]_aSAA}Lm>?Vֿ(3at8>G"7rӃ$]?vGf1tc/ӿ>D ?*bt8o6#?~Y?,<,vY ~d/QGQ2?Z11j1i;h?s:Qޟz~lV01}c[\pۿGJjGMC u +L\>uXL࿿z@ Ҽ OU]HC; F*S$̠ ;^1[eW㖆OaJm>/S{m +`T}^}[@s]9=Kx}Sگf{)V ,%3Κ&r#F@AN$O{R譽8V܍CM~:6[0Ykpupѣ(6e9R9Үmli77 B7X[ڄnDQfRb $84^kS1J_暮"hY4x?780sWX`@ܝZB'bu; e[(Lit)˴]Ȩ :Ɩs[x!߹9`㎪.nܕrqQc"f2/Ckz,Oq6b^ԓH6amrUJooj$B7+LR--_x$n1pX88p\X㷽E{H̖*GHN倜ng4 H>cSUa7bۦX$ Uw2)Qr%߼a>Kz}85_o:(A3b3WI :F/pTTzm-LNyT7xآm?/_oQFEE4 5,f7N I?u0OH +J)2e ibuoyCt@6DՎ`&_ؓr=$#pv-e/L2`dSGjADBQ&_*)qעPlM +!J#UC.׉HOH|怊c% T>Kd((`N"-R%̧=^w`"no!ct;ooܐЍ55#8ǘpc:IלLs|.$AxZ}d\~<@Zc6HTMybοn8趶*dK~9~7e (~buf6sqI'a:%C*}4BC%S(\D[X"s1BKzJ"流fDMnYH.4gfro^ac8i~r^ iamES\]%20MGo^T~(݉lzޑNk*+ҜQ0p7KPكӑXtjoI!jXO锘1G+q~(kj}k}YϾoPe* e1z'l{&Ȅl +]:~Խ G( cSr\JwoZHP} Oh7%i&8T t$H*H}JO*宁ЛL~|;{@yn~ǽK6qC%ѷ,i;&Hrr گk:^`PmIz±Tq*+8yʨ͘mCeYSE:(XC7Jn o˸NO͉q!Q46޸@8A3,v\ E#)/q qAr&BݡhX9!c/M [(*4}}>MD~٠n,K@ A+w.mE3 UbcC)qB^{ +%؟,d^kD;ڙ+ piY[[ɰз&"A(`L}̬6^pdhuk' +\{$ +E9h?5Q =ˢjaG*%SZb^FL ˷pVC(͟8f kj9}k #n`'Aľ\E]w!IFQ5j+ N I-m'gvPq|ɵ˂E1bCBv#. \Z62Y wt2Q[FqcB:xP:_zŨ@-e%m\vcu;k S*?sz8uZ_O tcAxy8hbHo,hz 'XvpΊdtSwey Pl}Z28GИM yym {U r,6 vt~֧ jỎ3W` mD cOFKSE24,^xwE" Qr1aS R # E\ O/ <+Zh$,7lK/[$3:PLi&l\em¯׍ g?)oJ=0h]u9%ɸ??zVQY6D(W'P6:7]c+?[A?VԈ_`U9GnX~pf FҘTAe;FS2͉j`/4Bˎ<$,]rd:A9zB_6`,O!aip;G*Qu|3,C.%/gzl,bCr˽!]k%xQ^,F(gcE,t蛵*EE62O6o#kSf?m71~q0P`7rҋID?_Ϗ8<R.,3$Ɇr 8` & +[Y\7LnfuV?)BWL&k%<ςJAjȐU7>g /I@1HgZQ,tZi8y$J&y J@0#C6(qa2FD%¾#8c8ay&/OWWNZ\M{^s20lj#e""9= f‰%^[2pmT)Dپ}9CmBqdKm/FrhDi2JԧY"M WߗƦfh}r!bHw"\ű5aVYƎ|%*Uu+c [\C m%hK.վ%UnBh +eP!7z$&f?weWpvh.yکb7!¤׎>p'yv>*Mv[tL{˝Iո@_nC*;mcK6/DnE+l7pe3иT5 =}.Yf̜߬˂dTO\pQEB掇} bW\L(hC ҵ"wmcdU 7wl)'B5@ +1]Y-:vQYH/.bwhl.~UR#M]w +:`xCRVleR&>d^hjz۴i:^+' d2u]5/@ ]p} *N0W= .P"t'" ;IJ{q{ O-dBP}~>G{ kghGXm#]u5ȁNvp3!?0Z׈s@h۠WW[%f4+!$0Kj0^SGF1q Si}hOke`O`wzq%3{&euj~ 'Tivq`%B$E(20 <:<[sIi$fNoz}A[*;)NF?"#^Q@^"?CscCER6aWh <=5=#PnQߊWpW=}ȻpT]Tz'UwX)bkPuXh ,5?ᛢ/dL Djnl"8.8OLϑ2@T?Au]iu2"Keؘǃ9HetE:SU]Eb8roZTb[|r+lwGkL!Q /{h_y95Erٶ +_1ԛ6-&HgcV_a,c<"@tZ1M f8E`TuOUI\5JR_˄M}P +iY]UƇZ^0#߬9o[VaS]M7ߟYo~}mW߸Tcj UpH.OT٧U[3S +!Cx/,Kw +i5"Szﱓ!!o"'#"{h.q5o;Q_vk>ESv%UBye{W 2zJ\A⃅C!}*U&rձ6}fAczaXR[mz Zc UjyLq6ȃ̶Aؗ!5kM(e-m]F"%$SO-Y`b%:VI*pֻ^D*_ƕfR FfVі^fH|*k9c`_(/JږQ bˉn|EC VX"׬a,r0j\VtePO_M Af7| ̚>hOQ_+QV +پÅ-*dǩAN\kֵ=^лy}Ni,/ϑ a~x=}V +SbM=uGp+z䦘ͻ,>0L˪ gw ȓ +n"~ <#+̞>Z&Rg&3=?\QL( /2װǂd%7*\*Zբ^d[,+*M_c1 Eɞ wh} Ӟȷ`q7dH6pb/">C9VK$4T.Yjd(+y[< 3n +]gcfFXjÇ'"!OK=3V^u|a[f~FZ#R蚮ROQW{*J <#xH#[t({SSdP>v&dd$j +Kx\/sb,:gZdz(ŊX׌4q@>q@XgU6< uwuzGۄG{{@zV F>FeT$!ɗ19g' i5Q~խSIsw~iL#d32q.(gd7c(wI0w]qۍEBN'xW$aUpAҢ,/j+U֩pEz > +hna>ny_E%% +~ :JUaŔ_wTBeɞ7h/h )ltlfF5}-mxmkUyMxowy oլGCMr-A`po?46Y9sS.wQ,D-GtmdJ#@џNGmm#%DZa٨Ti(W3{T~c3 ɫr(tS'Ae}V~R@@قC&,).XԔ8VDKV`n!Aы8{mEr]6GAy+Y$:Vj +pWث 7ěA<0 +ږK1;/u"ċf2?!L޿b0)&Yjzӹ=򛢫si_lL>"F0aVࠧVPMG\A!tBB./3\Emؾf-6vᗼ\bC$ߤ4i;Y?>c +H ǭe#㥗J tCC8jՈ"O%T-%F P%ٚpDD7]}qn񑡘Yv|qj̴Ho lIKȭ6%y"DQPwWUpZ=xv^"ϝeٍqi mzrM?'e7E#"Z'0cmA4 [yvNgċ9JQN-򥛫'&0I܀[*&]SnWNF)TǗ > +/޼ۅJON64sei >L=獵|If.T1PF@ *21B7UqBy [Di2Wg!\MU..쉩F_Pu˨M!Ʌ r?\xxUAs+ jJŽڽ C[J>D:TnLSsqZi2g !W]q .lfeG!LȤd\z*TS/ ~7od:1%3#g*-=5{z*+n{LMB弃x3I)P95Yˆ.v.ޅoZwɻůk J1߰23zB+/me3z]kprYF~K0_ɖMS!i_'#!^ }5n[~^ eA ;uOt9=Z\55E9<\(vm + Cf Tғ2M|A7A['9҂Ѯ3F(OZ3a֡{_U)°4+b猨^ +Oou 4+vRz_ 7@<^ͽ 3qm~T[B?lCV9Dɀ"g\aW(ֻ8 lGg:4t&AԮ˔":*|WLY eZk2:DMJ{{tyӸ ױ]]+̸4IxdqC/7+LwtxR: qa<ifoxA:' :yeQ q $L %R3E7yJ_9lcK&[4N'0$xJL* %孍&ypS>OTfc u}TSBڹ1kj/Oo9M׶iX߾AwDHD/"*^hR=q0+ڨ.ŮT+J4kSJ>咤y఑fOFEP2 {Ynp:/Y;΃C;(LD_ oA,8Ƨ +mEt%"L[;WD06#T,bݧOz BW[4V'?[q/(1at]6˓o |:m4'Ex[X1m'7#4 +Q +x; /ӛv ^9ȜWijp6L2dTE7<)`A;86OSw"Nvޝ`+Ai@4 w=qsy9A0USb1((+)ӞvK03kz)Cy@rGw-B:(AOx1" <{t"pR׺LɺY`Z%.2SQ@}'g}K"Ve,9N@4:Qkdf-nq3Buh 5H;D +0e".éǕ0Z[gEEbFܵl+bC⫋ +'_|SO/<l6BN<`-✟EXMKEŠA +[ݧZs07K)fex}rf'n m:c[jYpi=Xƻ/ +פ*d@B]<.mt3[W]ps!㸚*tγh6W:bɷ :LXFZ$v]_TEfz%DzW+[TTm$ۉy$P`*'pzQy&tV&x=|9(xe:|jk7 ``(vPTkjZK}eyG\vd[\,DD,3 ҟ{V-b>#`L"hjenQRW%YSUks~bM7}i:ڽVbqC +mi',Itz;u%\d#PN&? WbKv\ >ydPg7/5o |[,ϛ?mrm!)hK.+f1AZDԈӁP&W X^)![_پV~שOu߻=9 d/QCUrb:6/\&\,W& LwAQ01l|4yoO+~Ff>(#<Z6Q,#W )=dVSux>F[0I+ -(3 +'gA ]ƂAL5++3/2¾bFPL1XcKI}&v4wv]Ǵ]&\%lйW坒B*t_DBGGb͔#v(H(ҹ eKeЉ 1n;~A7 zi5F>~SO ͯf;_^Ƥ +m) +Lޗ%yvqЦ$g5D Tr v#B(a@s D?)2eB_dvBNNpfaz; ZF~<(ZSZV/% v%FO P+e%d`e6+5#_{p8mmAm=:-U-K`wIARߙ=gJ6TbhkV:z64U2.,;G5B qM"lPoRM#k8rb|`#,5E:QJ>&$e*Y[s_KIK~E 0<]C}geu>8Z@9V\h:43/u*bтaCkB7ç +hwOdvFn1k..j .tS_1UxVٹOj4k^v2[ O}Tp4Kѓ0}7+4Z a6K_S+k||+4*8Bå_e_A-)m):`G],ˬ}5Ig ֛<* w%P(Z3%' +A BF"#;ַ 7*r6ӛIc8.)1gxc˪iLB3aGp3L%_ tJ(C9wu^w)xkLMDp@S^BTb[mW0Ž!Ec#ъYXn9IEJ-]pQ(@λ*9B+-f7*"sFu 4JZ]U}Ub u_?C6DV:J [yOy9Xgt-0q~͗M%UD>v#fE +Nic_W8\F4yt}"3Y{($v(*XI YH;t- Z`ljqGM0>j"me6»%V 2 '{RQT0 GF(].uenk1$+fj2'>$rRn\u v2|r߲ k%!sZRpp #/UTr2@0}!)z1:TNܘ|kgrEZ j=Xae1*5IJ-=J,\=PP*QS[N2BvVDZvdХ᭤{qQ}YSsBT +C6g&_C*˩yTqb!jEr1~ yh!w\eo#޺U#mzM9 + s?`W<,I% v!'?0 '%ČZAmS}!Lk6u9DUeb. +ݝ hބ*"c7ʡ5CF%Ab+'S%0ZLCԴj +AY-T7sP;c~'FDOt5Ϩ,%F)C}YUdW  1/.Ow6S[Yݧ2zxIP 44+ +v5wwlK-D, +>@DOa!0Q'R o :+v TbԠKJ:pgbInOIa, s &~9JiD]=)]D z˚z5 q)g6?=lތ\6$DW6TH{;B _#ғ))W?fsWb[=VF{ME>JPPR%f"ɜmyIgx:؊8φЭ"c]Ц²f-BUQTv&& '5FW.NQ_9gZtX TSN<_JK/-%oGR`(2sL,EΙ1{7tW?9q^1l/ +*v/qN͋9^躼F/ +lՕ>UE=y})p{J䪌^ru@nX}3y| # B^p[uРnm3ֳ|v߸f5"ۿEB;v7ӁG2$e͘ %Θ)|m@%OPN< Մ.5 9Ա l]JQ7_aDI[nea1ͩ$ZTC^c +=G{k%htV')fI%(^^u1E#2[5Be㞶n5U\ϐD/'N h:H/lb/4CVLMRۄMLp9+EmPАojKbz7adu?W{n2ֽ4}]KTCKM2٦, 8Y{T]4,Y恂11,"da^Xc EA7·QJ1 E ɝnC*HtJb3w#S _x/(-1gاquFmQœ5[@]UIB7Ҫ7m͇ˀ lJ*wg,?9=Qm%FR "OƔ!jB%?ش h;\KjP{"QD)ȩ ;6_O\v#]r+ 5NJY\]y/d Wq,x#Zt}>ZqՅ| 2gK.wăT#f +[:C+B +fqQeY!{R&{#hC>-<=>u W;CdoM=7"Hw2M*P¨~(w$e'[Q9Z`d [*t4㸠(ZU c"-ZN]nxp_؜I:Ո 2w%H4eGσdDfo.iP1iOH"ݢP+mN!E.h wMvM&`h&fS/<]C(B.L~zSxv!;3çfX=%O]*l iȷj'=m jl']8 Ťl(A&G8ƺp:bW(e:"WUo'l4 1.9*:TE̾ILY{CA޳?K]K.^ˡª).փq+kn@pUsA%MnG;|UJa[ - E !4e-s 5lMfiX@ɸ + a*vI%^:ML(?Νq\J&uQv3}adܱe&;P +xI0Q)þW,> ޖZͲُrH:ޏ">m-얆Fi 1N( +۫]朝@ Ey ,y6UƳɒ&V./wX=* }J9[vC{+gBTR鱻]a7aa͉:p}kAiF#\mmy-뺫~9G.4 +hڻދ  +& ʥL.z@>}zD^:{H̃]̮=!w̍ܚ\f( pf.<࡬ &<~|f?0-$$ ܋pbe2X(&!2Kc'@˔l#̀Y2L fh|5mǒ 1 y2%$zS,oN^i'}z +'Tސmgn sӷ,~ E?(4,\לlUAy +,NKXBjOO]U:RjgP-HV4;&p3_EOΌ{Dw\oWK}rvw* +/!!h'A']W$x.7[_Xr㌗-ƘՓ㗼5נ ]p; EQ<"ePb~BͿpo_1^h2j +|Ҿܗ WUǀ ,V沙zh [@Ja +(O'wfW3*%^+2 S ͭp(*RqHĤ;),6+ݕW<[}]E~IR }M˖ d8Я=w_TRӒ7 +-{6&~x Fys}]]_Z[|\" +ziI_7WP֛HwLch_uVIx|!O!a|0st -}MgMx:ހXoK{ֱ.U3t/+.햑%u~`. +uąk?CR% M ݙ8v" +6T\{ ͤZWڸ*jٞs Y*^ȯ8>&a ,.MO=AGTcs8<  {aT$0qi(ς+j9M&_H +'03Ng>T~4n046^56,L X[0AZkI B#к$N@ٍ:G*S5,0a fJzBҡ> +stream +xڍWT}S@Q`FZA a` . AZ)0IES}{ν߷3 DE y4)@s8GJHӫ`4NA ;,K˃eA 8$/C$J; DH̛Ģ.h\PXNNF;@C! +eBfH(#+)/&' +E\~p+ CœB<`]fHgp( sA8P\n>c@h`Q+"= 8 +M+{n"prՂ'[C@ abc=a_b\AHO3X{QxC|a4Q'8 pGljaͣ <0-'$Z n*55$ "K`@wgc*@ ?}>_3!Xoۂ@P .E?hR-Kë}$4 Z4Uւc`Np4T-~#>(0:n7U0iRE:b4BAnR0N0oDH4k/DQ'.KHP +Gߋe7a0 J1=*Dkl?S'<4\z( 0zsBM!P&O8 tG~o1V̼\6Y֣<IH +,r̛`"A ^|81~`C7U"h3Q4zQ-'9`]e'[4)nyJS.S +{-ĵxEӓWyZkɼkk5rѶb6@W=?8OωN1d=qy)nB$JeaaA{WFITߝw +MY|1DL&H3[.r4{è~ǭ+Z^3yVvgWZc?tho"Bvyt5MVvg#$/?({bK<9g}rh@.8nihD鳒稠U!ou p^ UvApYgy_Waci-o{k=:=ka$ !!^1b$l4s\C +ur@mzB&n .E"MoqL9⩇U&&{2wHiWlijvYpڹٓPW i +sr)'ߏA_niE5c ߧ6I +TQa)Jub)i~ iy\@;zgS7X.LX}1IֶH_B\ (P#^NqH-~-B,CʕOSH),"NB=FӸ;VD=#$?[]yfȜ@%n}9ۯE@nl|M$]H2'v{Ļ` ِx3t;8+cz21y mJxӄd,oƷOk/Bg==H[,Ҹ7t: +uj*uݎD4XgTj' HF$K&I ZPL|. LzF#ov6AR~h3P!,)j6Uw"B|xp;kEs, wcu)[hQHn-sJ6N7DLiYJRKүlҔ(,{nܩlWST]3Mo )m W:G^6V#eJEI?vzcV3L(ߗ{`gӓrIxF`Z-+ <ϭ6Y@W_LħTľ^HF)HRR2et'nWȆ.:S2gY^-E_) ݙq͋]u1X6XQEwjdyу?yP:ũiY9h8ܠķ+<9Z{[O􆺳fnԉ]H<6x)Ɉg0ŷ.R5ꗘ9ud rFdz[g|oNWK:H!,ݘN%ӲrW#U^}\Lg6C{b╏^}]bɨrO%gZ$ϕnqEgd;˻1ƿ6%)z b2/+30TLNkevD_ V+6,18޽uۥo[p=U8$ 5}̥tJ;==U:]*8Kєk2Q-"kh]yj&p~Fӱ_Mlpxr{v +Xo]CZu[v~#[~S$1JȆhnϳ%E#!:JN[mg-ӽj*{[n~t^%E-g{M'RBM6NR Ɋ/uH79I\acKK@ѧXP|(tM İg8U-sɆwjꋼoK/Hlo7.l.rgn[˲>؃!Il:WaD>Eo^g~6 +ǯR,si;OT}Y-t7Xo/+1Y(X| BIijCNޖ5T^aϼci?dKM`Į +\mgH|~"=v]IC#[V`ȑPщC +BX _[1/.vy (1ެcF:BZ=sF7/ 2=R )L)< +ilϭ)ܬ݉> D5;c9;/Y;^'፳uHMt 5o_+dt\nXKEBzU_- &|V]<j-޹V;~EQ+G~mmFdR~{"k{YJ՚ݞF(h2h (3"c f['oc<^5#Sh߱YZ.%LSaf$6S%ɝٴ W1? B|VO%@6P<K*FG#O; +SE7w 7wmlI(fcc J{5{>L{D*c V/>`ZX|2=21Tl&֧B@zXḉflVh[ 8_7)Nvzz?en*|+}F0[Q=g/b lr-]go{䕙5%,INzPvvK/>9>n +02fqi_ldAdCj`?.<|%ժ_͏T`8> M=Ѷ\>+c xh|!Em߮`1ͣm+,P X8v9 +i+afM pYǕב٫f^t5t!w kd&*L +Ơ,o-) Rڎ\JS(d،f ,ȓBlܣcRuڑ#-CHQ«7a5Z`H5p]J7 a>/3,v;^5Ud:JYB; R;u e+1?<̝5RiTg>e::ZXlB_Y>ew;|c`qd65yH'f[+gBaf o\m?:n`x^8}Ca>5*7!^W7GF{nWh#ͮj:/?oɓjgd%gU!r@5}Bxڣ'UXO"*EkHs)k-*2)>s`DweEƁMؔFekvffB2#-I}b[|goIhŮ5^4ŧ]I8+.Uj ZP:Hߡ6lY9H&|% %6#=&N'UR2j;+Ktټ{|ASѥAxw]{!673 +`[QvuՓ-P>T~Z/N~-6)kǦQ'=*:2RP]xU!?>i$;!'#EÙfBsَCdq1t65"1=gK\nXPx +z3պW^D,#PLʣ{Jɚ9${,GƐ:q!'vc1Bwjaʧ Bo^B#v$OunK} +TD?sW~&aʐIoJ3Ite_a!=.OXڤj.8b0#c'!j~JKi58&Y>4*xΟU|8' 09o'ɱ+!䃁~ӟVDL,?ЧkM*ax?7XtX}D"Ҧ +=ǟs|bnф$⒁#?;_ uYŷp!B*ݕ*$24kAx%aΖd>pRc|'Ͼ)1Iqc(r\cSޕa5A]8e-V!v2q 'JەzȪ<7ke +#VZ$?N2J&RU{q!+i ?=rSo70kf~NǾYyaWaН!_ L)pI_g% w xjBHx-Bb7VY5 FBqX@ͼҼ2|iS Z83 +)!XVC_ѪL~Jw>6ԩi7J_-tW4,؛[_ߏT||l'"&ujxcV Gf]-x7<5NT] 1X4e7KQ3^a֯,$_rakV,/4jMfWf)n\0@+NLRU?W5u;p*%%m9Fl>%=zW|֜%NoR4ăJU:K@sC7FY4ɰq#yxW%nOO*9$t-Gd.iYdK%NJl R7A"-gdUyEZL$W2g=N +endstream +endobj +60 0 obj +<< +/Length1 1426 +/Length2 6525 +/Length3 0 +/Length 7498 +/Filter /FlateDecode +>> +stream +xڍtTk/]%)H)-!! 103CH7H#( t H7t79{ZY?Ƭoȧ` H> @I@PP_PPl& 8 J/dDa6H +P\JP $((" .Pt0(AsW>8@IIqWlg @l C N'$MJ@ˋ;>xN  Jk +? ^6p@v (e=7^_q/G`oc;;  u8! 6? R `({O0;p_!`7$PTUJ0WW 2CUGw[]0/ߟj+{7c( +"s!@s [Fs8R@??'{7 `ClA`(?Q0y8`!" %[0(P3U53PD0oOHTo+ +l50`QU;`Ͽ`pKb, +ڡ>o6;U䷔ڸ!>Q|@CMUR jP{H;?T0 +҇! +((_2Tٹ"jh +fkD6pŨ(C{o0$J/ r@UFD`D$@H|Apo_yT/dG0; ~\JދocXvmK.>Yx%1n*We%BjG/k*'sL7~_kq#R m4|yUH~$&[~>ŹWwMw`f֝q8!EllhXp|x$'#LI<{qo̗/|ʍii1O_hޝ+~LnZq}lsn>C ՃW[w9ռlEIo~O Nm@{kxjF w}*Ap%e?)j+[}VǗNz~Nw(\aH\0F-ZNmP;*N.#+%2o4|Ry\:c&MKb,5Ԟڭ:OK+0!*?gd^!p"xF5hS+ʰ;%xMcxn3I@%sg H4 ۃJڈW&e!ZDV ]2\:ak2xKXq҃[/I*쁖Ô[\CD&_Deo; +VCq';݈L~XQ15J MbF1;]&G_l6A`(K/$yg1*!<\Wo6q„t,}ڍ[]Oo?`r;mj3WǶqr.(]GNCU@$^t`RZI2dF %$;kt^ilc2❱\1膜gQh۝M'OjyXJ9 V2n"mz5L+ײZ7oe|8C"l^5@gs[RAs/Ry,>C*A# i9BI<GcxjY)ESY_)]$窧C)@>td7}<|^1gvd_}V +(31rlG\5G}N)޲G'GlQ3LeX3k/+'z>/~L2̋4=^[ C\:!=LjZ{l[߻Ocb +'E&L +UKrہuu*՝&Lقumpp֗l|3j>hY6&Av4F(ki| 6S^rR*whTFTN eɎ:mOYF܍-qP* fw ħʘrb=Y6[mSJOˠhܧbƫM[cP,!׼릒w?PFkzjTIE[3Yյi++ш^Ƙ~kD1av 9ۍ^4IOa2]c|d _V%߷\'0va1iiz>G{NL +ñ 1uƹ𼝇RFVYµ#=]7luȥsV;:#NLR7RJIU |Ϻz8}9N̝/ ͫ%`oQ»aAVfW9-վp'OtN|#S|2&WVo'x.XtMy#-Ȇxjiȩs::mݩU #780Dʮ.\،yc/8@׽h_mwTʮ ©.u#|"KDiCaJ_(v;h{VrkK7 wm܎˓"lªNx)*l9]Ypi=-{gh^WHӝ5PGo2KӟjYa@MElΓX(|ȅI@.U)ft#LEd˽ΆT쟀{} RHCi~ XPc Vq>mwr,dƭiȀa-.̜M](ZBcFi Z&WX'ڕ&wڲZ+Woܟcrs(cC1JS4_Z]T%Mo7[D8#6cE|kX~ѩ(LGOQɺ/ÈU鱧 +yh]e4-ݏ "oǐo<27-MR5R] >t'UZ|ܵcMhALAuz8BM+homm^ĀnQ"d8c֥T|yʼn ejB=* "v;tIđuCTZB-WVVΰLzXT4D +:g.NB1TI&34ةRyP *I30BvRf6Y(QypS}L:yQXn&'#.4kzDbUvWaPI8OQzĂʗ}hr?xdfXڽ(<X'NIjke X%F.&wpŕTʱx~VnTʻ@U{,]R p&)f2LH{#@՚8e!^Jw9@< rwsLo[2068#b3TFknq:hF YݻYˑZSqXOP+4n󬅺74x:ܼ9CĘc}' V#krv֙a+_amB(Jճvq /wR\ϧ$3fa3RK6J 4!}o] :aF `𾱑괺T̠pkΝ^(q4zz[ #bL_JN]ΜΫR'd8ͥ/(E34ȳ(mWg Gmg`9 0D)iFm*`O(|z蓀q(KW#ބV&(5 yR Ib% gعoejfY!iIG:3 3!OpP1[N+zjIUr< Y?-\ZP$s 5$aTLG{+UDج'B |(!)-H]>uB=>ssA鄄]1GXazqd}n AxSTT3B8oǟ%P6|6q&f\*:P{O3}x:^ Ii"{(Ln!33$!Z%P%8җ7))U mHC6p2l].Dz5lfIͱ|FttmZSw+}/x ~19A2f^KY!,r=HL'X],FDrϓe5SzƷ&%9쪱#+&ǭp ."(i q4?FەMh cDy&%=# +7RB1d0u|'tsgMnHdS6X5{5]E#+eżT6!_z'`U>jMc9$cyO73A4`t@w)ᲡCmݭRwР 4х>Gf]O *i/rjDY/T8y &2^DMubc ȯ0۞[ܮk:]<@MVp'&* gOFb@ӜZlS-Qdp 3VJLFm1+ʜyhaa$PӛoF9#3ݽ T4EP\#:vyn7%E?kuvhD.s,VAfkJ%ᄡL=@I S>{:@ݕ='=xYh8)seZ*nYT7Hͅ2Σ2b4vZO2,>H: ͽ<t} +endstream +endobj +62 0 obj +<< +/Length1 1560 +/Length2 7758 +/Length3 0 +/Length 8780 +/Filter /FlateDecode +>> +stream +xڍteXj6 +" K7,K%HwwKtRtHIwxy9}?kkw{晙瞇VSCaG8@"@5iC7 ss0C0\_$voSp#  E!Tk,p_~+ඎ*Zk vOsWgA{eޯ) D}Ŵze 'voh@~ߪ K$,\V a o$_>Ϳ /owz"c ,poD ~ }yޏ?' +Bӓh}]Hy'W1sCݺ,u2gTOw[ե]γ4xroXNޝ~K=kB3H)AvhRE=acJd$.T~լVSRXmV}kOr~8Dө\=z#=CD(eqsJ< }o[wO{Юo=|)1uH~fNjMq;4־XĻs*AT4hSCi/naL`ք +ZBR}Wv{Z6&$HF/B E=u*㜓5TO|ThA.h?~m@كY4GVJ Jϯ0f<'wk= 36sF^?3YowX dW=)Cr4naƏ?q9DrKg۠`W<ףZq 48{{|Xgaӑ(|/m:e4];xOK8/-m_]yWRYʡ*Hi_uV=@Ҁ+B\2*8M>TykW2Ky$R⧻B]ZYd;pPl}uչE`2qi+csYeU%B+И{Hy_xao &Lkdsj{EO%*u؉"^ܰH:؁s*R*^Ov-#Ysv߬4=dx7ʺO +Lg264t4HU KOlA%@dCY}n. +#Cs[@!"[}h q7.+ܦ1#I*,۷UE&<lb^E#CPl*;% ]!luA[V @q( 6Z_/YT&'̹⾴ ͲncAy"ldhE90xB6{A!nnͻx2j`‘H|`k&y0ӎw>4#"FC(7Ȳc>'"ߴN9p/ٙd}-W tgǰ@>:3 +.|o q#tfȄL>h>WM5oȱ |JDj6࢘RiK EeZ .!it Y;D"4dQtFΦ9F oJ.AHl(ka )aM爰Á8b#t*v<|3=aMJ.Vo?Sn-yf?9{F?asp* gjקmMwُM}-yA6Hd@,({EMϛ~hfhܥSw1Jj5IW}+O4^?4Dg˨-SVeU$cxm_>4o`7+'lUYtTL=]'uynw%[ё[#^a"$ Z; ĴeTh|یdoDc 4%޵hfW⡃D'Y)X$.bWGӚie>1hMH`+F >Ei.__S- ^듗ZZ|_\ YOI,ShDvn658rEli$:5kSdJ0`x_~hDI:nwqpbAJ8~(<˂%AĀ{RuǓthO_>7*>dR$a!=rS=fJ8۱ݵ2*GiQ~*fP] yK/kGdu,#4 X*y轢͇<~mhĴep̗cLQY7Ίu  QK,{뛚*gt$} V]?l /(< 2ۛjb+ouJ֬| +"9#]bhDž\M"k_-!n34"wtJth4'rt^\Au1Ҟx,!̋ʡ*o JiVҬy;sǃ%UM7fK>UB&ߴ*?z4ɟ5eyKqŕ8<"+ƏMC 3O"x_.pU. '} ߃Vu<g.eTZrjژ4ﲔ23^v#jc8rw`OЉ/A 9[(w ;9q)/Ӊ3RNAbu|6sBm6K);(*([ lNTo ;ʘs5@kH^,Hڦr-+y^G Q:&|Ӊ'{,걄Ckʗ[1o,ptW B͏_UQ^jP'׵۠ԛ;3"E!.L-xN#+EmMWJ\4L <-6L2hh%mfi s4JaBɦBxcFgj;faϜb}>?Y,M9|.2u];#dբyk j;8eIVFҴ :aCHXDE*W:|B.z'~S#by>+U{=[enc8DHv\Y%|6${C_`;Utcf4Zv ƼgH)tP ճ l;X? =k;_Z>Br5?1DY)- ѫ`]Pp.'Y+v-RQaXCA rbZ" ݚsSМF2VZg&n2G(}ݒ9{rSN0wdJhRЦ*aq%HOJa[1P'w5azlMhcgxGՋC*iY-;J<Œث7f'[#/v_3HnI!⴮%zOD<3L<BnK3J^T-fSt!Ǿgv5G8⬘)O}m Mna0em jPr@ Vs'x@`4Y*ڋ^l6͎3Fk8(Ix" +ҋLS_ -p%N褔a% _Ginb~'lq`!q=y5e5v3*c2\vS%5mH\Ob&zgRt33mἎ`KɂU43&!7*N^4 EG(9+!Q,r,@ :;Lo2&c|Q ߼M7a1ѣNre ȹWA%$PKIG<(&F1­gOx4 V{GN=EtTHu5T2;E9I!vpvcӈ0§pb1uEç,[ZeU5.{[W}"sOlWo`Ua oTu^=mGh.rLr|g dPz(dԟP ټDá~|I$'oufIbc7>IKZ_咈Y +dQ9lx@A^n/\.BUZ(UcaLYg 3&; ;a/IM(n Be\q|H%H+mqkNP|b7="jiDΏkL~ :͗K+ aqmvj© h#)wQ*:g/,FjG˝Gh +,mAmz2y28^*FM=i~dbUq<1%LRM_:72&#m\:Mt&6?m|H#,rYH}8C&Ub/wg{.GIy׸C|>q !{|XN/:Hk?3|c߫l/ޣ`ιE>ԫY\]y(_}|J.Ŵɯ5jୀΙFՄqHvq7jD#ýMV+ Se%VʮSXvmM=d^vLh1"ա| OFKAa¯>dLɋ*c< Ǖ1oeZHGbɠ +ϼqH]`Mk,R-Iiַ eהM[[O_2[$_{+pe)"sAp ՁR$g;gsd$еPW̩ą`FJW ё]0c~lDBNt^ + {N/͙^+|fTRźI"zI]M/&5ziOFmJXU/6+zՑ̦_zVe1o`I=yU[>U#O]bmL54j0QiWbrL%k(%[۩oG動BIy}uzݵs۲'b#Kޢ A 0%_HG'#sפ{9;R' aoVYjIzt1W`6jܧ.RSy4x?3<]Ekrq_f#q% ar3,Š] rEObe.*]< M1?gϸ$/5(m!Ta j2͡LLUǞx CiD~e!p\ CфiI%$Q;o]QVUpB݂ht&^yv!(uXR}n.>=iJ+ufa5 => 7kGpִi2aq^yrNÞ']SK)[ԪHDxz8-$DMxP1~o%A -TNoM&DWZ !s ;mbx~SL{ۇKI5Fԅ5ҭmV,rfWC3ӠA@̖6* Ñ͕dutxq❩ld) g+?j[Pu^FB|F}^&zr>,rasrkX Q@~v" ysE= EtC2_J-ɇf3=Dnۮ1Q?bmŭ^CIG"WD8[ڑu'聟zJؗA\/iDv-&&⋒ͤD W⒕[5⌺4n߃d-tXzQ׬% +,V*Q(&à[UAQvIJ_ck~hp R67|yQZn?g4|R=rҲ&j"sk+IqQ l'}$ϑ{I+MKo0t88t,Z*8<[! /!Ǎ HMc5"D{ 2K'7+*G_ Qj|mxNbvP[ c=!`z,]|,m(DϦ} mI3aAiZ=4]4"dNQ|K)\'*!aE/z{?dE ŀ+n&ҏ5Osc#%.sy33ns)SyMMcbO +N/hU2sV=Ҹ <3eCIJjwar +5c.PxNǬP'h7#x0GA;ǶozV1~ȀKo_>a$'h9k**Nz>}a\#y .Xƌy$)ë _(Kz?ˣ ?j5]sQlm՚}.S TcQQoz+?b;w|W 'G<9xѓ40YdmBҐ(4& >KGc'Q`N +.M*V$E ZFaR2fGe[sv~h}[L4?}bw)(=ND> +stream +xڍxT6"ҤJ^{EC &*7A^wM(HG +E{}+k%yf̞ +'=D`AB@i%E@bNNSNiEaH TPP0kSc@=$D qi4"QU'F"hbN7 +# III(BQ0c!`8 A1H#I {zz +]BH<qCPe>5!bN @hl;`wh ܠ+ݟ_``Fx +0Pxa`/ Fb`l. PW2 A0h!4 G_iǬWAB4Ta(({@z"|^9ڰww6CCT`&PJ\\ >@ N¿60vv6c{uCm@aP/`PPtsE a C;; uk? +bde=7U UU-/2 +("@ 8@BB <`؟:#V HU..x\H,sP tc,+"uw8/Xc*Cbo=_Ճ]۫cՠp2ZtWx/; 0X0aQ@"`o4]P%61q{cg]|AXUC~ ,@b!l$`A@q ;ˠ(#wXv®0;5@Q( [B$D&ehyrgTeok.A#U 'fG ZL* +|;~eG28IGR$1?³N7s&-by_j +(>`Kc*v>dX Z>p72};Snj9ۜtѣjp*zjmܡ~z&4ةJYj;}k8? +EUn<ntCv/1ٮe~&ݜ$PΡYms:qP- +eu.ԛBYo!x"j1~alV"H:U.鹲!m T'u}6e;B_*,X'[o#4A Y;oNQcjuf]Syxm2EM)gMu7q2,Ô(Ȩ\˘_~&,*|0~xMh7vQ6 vCaBNK1w`; [ʖA3yWfT9ypgTy5j|~_SƫݞM/͆xTvExV}4QfV}`fBTC7ՙݵ 7叔Uȹ¤DW|H"TIJ"7 p +:i v84GS}p;.<3 ,A&fZu:e#h0=]cV-?Xu9 w25C“o.ri?ZHgw2+S8QXNv [0W5ȓ lESL$Z F!-@IN0P I>ϩ>FP:}8]+\QNڞo>-r콸Rcbꅢ5E2 ;~N]9 +3@RGCړE w|d[g=4:5l3~|dM) O_kBpNXYb3]&=]ܟ[ 0aϗJp1"V;W\(@,dVe׎MQY FN (M?aʂ],G S}I˂q8?pZf i+߯t˲OHp0 ' +ğݶ%ƟL6 ،Έ^'0_O[cr!񦌣mLvaP]$;rƥC+?fh(sA?ymզnql4Hx;vgnȞgQ0c/K|c:ס o +t$^BƐٺEZu>7f|%x?Ni+˾FLe7sPPx$gv cR:PHnւ'2$͙W{s[ui]zxOوqRq..w]CpbF?\CSowT{?KzqBa˛HܻדvfNiw0sa/4Y*=75IwI r@Jt bR6kxZ̧,EkV%uQ,l~hr +tI ?P83s?ԯ%JK]Ao@=h&ߛ#* #.5+;kG5/pLУzaQ|ϠвbNOY5A0` UP}E֭(Mɾ^"yަYA= JU^f]Ѷn 57#F o/]*56$\msJ*D$?royG+{`thY y~-;nٱ IIRKV)縺N6ي3u9*d|X> YLtZ]'o^R֜ԻBl_5^Ʊ pż,B3MT`S|j+pvPQ@ȈЕk`^f}.g't˖9BnQ7Ms!;QVw +CT悔 NrsV(Zq2EH nRN^w +fܵڹ)ߞ%7;K#NrgiFWJr]0o<:vnڴ='3aAwtL{賍*ҪP-CH7E~8iw𿉙8LEo?2 ?=-fg؃ΒR翶G(P#ZϹBDRe X"4IAZuCEgaRFƁ!`A8g5WJ@Ef 6vW]I i{4 ZbDK1ǡZA+mk@S_նbgES]uw*gne*VZxrpuh„} C*fLzOVo0=CX%~|I{CX3 yEcB-7SJ>ud@jjnWv`7Q./&XGq~I)CGK5=sy /pZ{?'U4ΟJsN!}N +N!.**;hvQҲ;'h4)i6h`ό*峉cO侀(␯ܾj]-L?d`ثs{?BV(؛u-i9HʍͶĨ5bld#o!E-}Uîu!Hc}YȳKm=q)=GD|Givƫz[t0&?UK,y4OI)AcĀ9qpq᰾SMwqh^MѦw/Mht7VQd(*7{^ܐMg4<}Ҳ*AI=%32f8Hc%i qBMϖ-5@ +m͞!6Yd8Kߥi3(xOP.r˵w)GΟk:=֯jݎ T!<4Yt $JK.[Y 4~㡿1>y0+".c#{9zS +ezGߤPSz&QdܰX̚DUbA/d%fZ لݽ~jf"$In"eX@TF[:o5NzcL/6x[zq|\nNHa2C{#xD,L;/:LRӺ=:/&4/FEBbBl#>"=˯&+qG9mj|=%g:LIX^uas dB1:3w67ߴ^= x +ᑞ*RϼˢWֻU]INcZs=4Tv]5<'9+򍤔LIۦ2?@_d@8 .ubb(?pUHRTPց;dQr6[֬.y=K&J!OyK"՞F_MP 0>Fҷ(Ƶp;/mq4E O,q-NX=nT'32>PW@{lH.rTŞ1Y9ih~܉QAY.>团u!MKZ}d?l WfpZz/(Ec$h]0`{ Ůub.m"#i}xHz2BNDϤ9 -v=Gz4@.Z"˚oOD1?[Ë{K7Nfhtp,o!$\hph&=;AW4seu(W"n9l/>~; U`qD[dGos7՜ ʕ}_ZKGq-z؎GtEƇm'9>:ȸ] :@f]4{*C;AD߾<5HX▔ۼT%Nsr]س+5AŇAw/~L'6zex},fSo^̾E=tM-Y~$ܯQ!y/sզV{|`(n4FsR~w!kZ(-KS{v ­^=V-^PtпpqTv(6xRņ\Iԣ cQ uCvwNYex%MsAA .bJyz}nxߓ:\X魸l;z4e!ivep6.eR :׶tngqѰ/?~rw:Sз `qiw=ۭBH^OeĕK˶lrxᩏLKmP.z$MPWDS3=Q7A{[no4gAנKq3R׶|ii~+Ϲ@CACSJ>u~t6*\dRNIK- 7T(=`6/2,?}NetY׉Ļ|>?Z ΐ +KsscTr;R,og֟=PC j-G +(\ Gg.ZBW*mdab@/(a =׷JAuT +A'Ulrlٕ ֙|3Jg`T3<%ctxoZ/{+.dʧmΥkz?VcS?~N \1AS̫ ^x)Yuk\WyA%C=9"Pѷ$D_N'X#1V{-h[Q.9)$Oʭ_mj!By 4oZtmɕnVEz\6JeրBx$>U ls*2'Px¡Jf7 P'O]XC] r4njZRȥ36jvVn ƒ\_VZ|*v!b +~SV.tBCl5mKVaq> AM64atV  +endstream +endobj +66 0 obj +<< +/Length1 1392 +/Length2 6087 +/Length3 0 +/Length 7045 +/Filter /FlateDecode +>> +stream +xڍuTݶ-A@!WH4$BI 7"D)ҤiA.U)*EzrιyoFH=\k_8Y Ma({ +UM $ +4E`]a9AC8L QH+PD (")+"% EA QhY  uPH8rE#mEdd~hCNp7܎P+E(#ź + {{{ A0B(u1p50. g2!' 4\P8Dh nsCC=ȿU BQn/t@zBX"B\1(\> p;5܀@w,Fp52SVGTQnnp$՟ Wͺ QH k VKA`p,P$#)).{>P'_M}ῃ"`(wnx c ^p  ߁""@H`ß5 Ӟ'[`(WXE]UC.SQA@@A PJJ26@F:2ӿ:+]Np DnAq_"RS*/wC +gS-L!<;tĉYPD\$G`4>p! u#?/"pC݂+t;#(/JH!h4Iw"8C> B n@ + u8 #8 p王A@a7vPO4gߪo>p(`v + w o9Vf㧶$h ,3'Y*a7 gJ#Ǧ}l:rBӴb{UvN:0Tz2#`SRbkm5ko@7`!k6^9~+'[+*48Tl?pp N|Пۓ.U%YI@Ú;@(Gǥ"qZ-k5 iz0\~ѨJn.\s iٌ΃&.ll4QI& &-;zЧJNB(77lܪVd*}1P!!;斟rבO1y5ud%4*=d:|ݹf܁}iQznq]p#B_1]bYV %&6"t ;j΃"aɽ\Ͼ-<ezpkzڝ^Olts-]vRv\q垰0t^iy{^K%إ9Q WD]5ATmQ<*9w~ {Ac@ZN8%X~=$ +uJQƯ=Zٞ`ǁ{,uGLu_ޚ #'"س '˴ߨJ;y]Q'|HLddMnWrfnvwRAB]{\9|~V=HMbhm Sdlև")i!yNɅ=brNu,,ha +BqO)R#B$*F 糄!gnuP}yFs:җ8Bjb/3 ֚5{PQ{@9c7n춵n` +dZ~;O<DcӐ\Ȧi HϨX}Co~]Q|t*3y/}A%-mYr$%Jig%w$\D-s~"knO$raeܷ9U(K;`?L/;Xh{ލWǐu} {w!n:oT|$'npwCE HE=spU(װ>xc[I<.ui,#v ]1:뭼\8,_RVKގvse_Hzh@bGut'>:Q{X4UI+h%u±^ mG궒 # b -r^ }U{V:-U;V73ʸXC`j=#S^~N@|pr'M%$t|P_MTrJ!o5*ln0kT%2Pڍ}w/9B@o=2h]K$dRdaKU+^oQEHЛ}Ђ\-7$.~N?8T<<͌XxJ;30_F=k|lyKE{S2/{L]$+ǖǹ2i7ļKa<׭v>w9RzZG&C3mBKߏYD4:L<A]xs:N㴴< Ai 0.zc~J;J_;R^|5&6 PoaAޚ<4K#}hDqYƦcʧ+p[8Y*e6R^.7bVF݄sS >HT1)d}>./3q5榾ɥOom|fq^Ywʔ}TPx5A6O'M؏O?:\x(zȡQ$0./iWax*H16{lr}5-a\9Dֳt$ )g̓f|0bсoC}I穪2UP8\t5nQl\nYO~D}&T}!3xd=v>ܓk;Z$+΋LO W6|]nb''ml^*i* v~[K.u?D\fv4D1_x00U+ 2fVש'Q6kҨxF褚\2DB~ +/õړ +Pu}0BJf-5.C9}:t[u4SkpGZG|,C4Jɛ}g&37] "*t5ORGmGS6ϵq\THz=s[vl\]j~g\˦.8"`PnnxǠrRK\)]hOv/ xVEY.2?k |%r$u-%v1WFӄ_t5g3 D(m>xKtP2W/>3HnD7]i0qx~QtS~{S>8 j(Oz1Qb!z}V/'\a8SOg> KI0QHVrn. d5ׯzzQcXb+g,{;J5W +)҇95nɹvY8}Lb"O=4ͫtsp3*MΧ>((ҼLM.Y5n5hg3RӘzd2iҒ%EScGgb5yTSUv(_3~rc䉫E#;БLq#[^V*-妾uq!0],ĿM ;2]HJRw?S*cn[PNʂCZّ3 fWoRj T_N^8ׁR@[E )z{F6aH!&|6̵*&-AޛV2$X(>{Sͦ@ErG:Ny^rLP]1I,'gD/#Kg Nc_h4cF{Ӈ6 q07i2#Ӿ}Uf|@K|>ly +S+] +ϺI(l}x2F[E|ˉ$40W?ZLZw?@!%nPht7yav@w-D}t + WT%iDN>4bcDm>n|ҸKH=օ>瞄>fx64Q\ʝn!'b/DA'o׹fOaW̘T +7bZb9ҥ V\cWI-u:WqB ֝ˬnK,C[A/`5g\npzpdԐ&ټQb,Ll):>YR8GП1Q{\h!9v cq䫹#XV+u7m+rQolo1b&u/HbnxvJPFau{q|[YV]Ңb:%`jz y_|PXoHnG3/yxKra6+"Lqq1Ov9RL3#^9i="\VH܏7:?X®rPED5QP$e 1!V~י@!tpF3eiSբv u~?*F UC8Sc8ϟL8_(we6s* W/ Fu6o[]YQNt-[MB;wsH CǠ6 @b@h7DfZY! -"~=)!>{BzokO䍫ѕ|o_Mg7t!-FW:mO0A̕<޶Գ=ʟ B6UF5a,kÁ$t_Rd +e~˪Nq0ߝVv 45a6i6 +k=K15f3-n[7MzH%ڽS}=ϳ˴gǦ(Uvc]ż{2b`z.ܞI{Si~4I^'HqyT-Ru( c;&( sfq|ɓSbiʓ!vǵyzv'+mLtbgPd]jL\1ed΁tǕj{V>a^)ŤOh JA[οMѠPl[MqIYCz @PBdc޼uWmnOﲝɾB +K)x~ [-z;w.Iny.lo\Wnk(&˼fʆ򯩯}s+fbh4s cܹ@^R߿QG^~cu8~zMi 7{L/$C)fvR;ܰh辊1O._-Pq%;,*6fkW)3V^]B峆i{s^7Wn+ܷ!"~DOCrpUϫ?r_d)+`"/_F;`j;7z>ix%GRTuD;'a.Y@ k +{\BQ]ã,up\i(*bF4R)1& սr-T5rrfI {I] ^1ul$wroifѪ[^B(6Jɵ՝re_ rlwߦNjc1+B.;zY `DPUVS~1B;&~<5{$fS-Acsm3R屜E"BYe*_.Br4V-u=sU+__ge>ӮWt&Kw?#9;1[f'- +WdzV}vVcnNTthmwJtk)U|54 +9׸F(cfx' -\pMbUb/]f 9d:QA9FSċK,8b(Iskd -$7] +٢tqeNS[ +endstream +endobj +68 0 obj +<< +/Length1 1313 +/Length2 6528 +/Length3 0 +/Length 7434 +/Filter /FlateDecode +>> +stream +xڍwTT{6%- 000t7"ҡ t7 *H#Hw}k}:ks޿>k]y!yx%ZZb~~!^~~A\C +Kb FA0PD; 4ܡ!$??@_?@8BZ 8 ˢwF@_ 1yg0b H݉@(n #]t:2Ov#< @gxqY?zP-v0XWoW 3yC`; QEz!@u=(;s @E^+lD_a )0 ]۽L %A` _E]`Ww_;?:{0 /$/ ^|z~*uCw\_7D}El?`?/9,àϗOQW^WŐO^_A @@X /w] 4Ubk2-߱w!M]o ENH +mfm?@g@ +F7gU [Ց;7t!H[?߾0[8׆n>wWn@`;;`G)_g Sl==ƻ#^J0 l;5 +sk:/Y~e$w +~y+UT>eik߭*ȆDƟ~WV/Vq'GɻGr+hqhx V]Q[5X޸}Kz٩UU831Z*3 ,96)1<؜$^_ONdk~!`Ÿ\[3%- z7߂ݓ^unMSwSCR=lGbb֪GCQ dCnE;, Ws͋c]R-NA gľ 6fx=5߶ׅGnp^ 57qR^>b_dY<2)U 8yk콺'|>oy@SĠ=LB* @dz; uyo2$(r]II_\yg'[9 KQqf% cߣ5izkrQeaam:Z|k=JޙLUԬ!DfhPjFS2ag0yQ^G>4-H}ښֱ# |9"#7^펳O+ F =ꁨoV":.^dd;|s;*Cr|Y Ϋj`ޤw O.ԪJZOxu0|ﻗd1-U4&1txG \=[G_uxi ߳WETs>x/K;7p8 P_%aY_oj| H%{"~%]t.V*Lecw22f '{Jcsk !E3 ߇YTf*M>ɉQcoZ5}hզNCΫ|Ŝ roƽV[bOifӽ:hauݻ\\imy[C' &rpwk0~eAon*OfK}2+0LxI#8+rPڟ mc`^F޻9j8>y-Z3aDa(:C)Sb34=h c߂pFg^%홨e,$ ̙qL1 ~Srw?&e< aJ$멏L܄;DاG+[ҾIǘͽ79syS!9BVV}HE.r_EE|7F|! })1<&(nA0](2MMj:Ll#ij.IO?V,H5n3lg<{y!om. aa +CFi~&t8pQ)h۵|,1M]]PíI޿IjVq?Fxǖ',ɔt^ݢU,|ʼvt攍yICբe+^;K(۩KΦDNדSnh-Nj: +hd["fkFϾ涱jC~I8l }y9\f7?q37W?zVim{d!flPZkL/ͷPes_,Əy,*(oozKL^nd?ph!B84WMsqd#Y*'A?i|?AͲ ڨQ|Ka%{Jã}<-gMzK2m?iqQĿ}rN/LjQķXSGj/]j^x%}AGJfE%a*#.1GLhd7k!&_y~uk9)ZۙWװԇKx؇γyB]=f+3 +5q#Ih_nt ^Lpw̾:hW\0%N1 +2Qf0,v\ O'8'/FZ6+Uŕ3 :$̮ra1Ir +EEuȚrR'qg5z9.JeC^O?5V!ÖS+灷PGͧ9urdsb}]4wZ0o{INlՉ.]VcO^"|#Y 6^|Ѐ39݀:O8(k(}LJGlµFH5:hen~m lD]ucjP ;Ȃ]=X Ba刨U# XY9a?O:lq1+lʪF~O|i@]eq+N;݇xc"Eb DrfT1qr)wDClAHĭz9ƙ77quAcgV_~!ikyܡ|BS\?vO^ ~$ӹi  ^ΕMuWH%΃ CeG|[zBODd6߬WpaIG:gхE+(S5&kf$ Ikbyn-(.LD79IM-i/ 9;  )E(imMcXеøTꒉ&w9zC} ub/n2_>+Z©Ȟ֫T"U=AM +ZKla!TSO&!C.e/qi1]]e^PgdjF~16v 8]&ڥv;1SeU+򀫝X\_9L VFayصx,֦W-ͻ0'5d!/FTȭp2d+\o0h`%db>RW<%~Fg)h:Ì>)z{(86^JsLQq,%Svz[}~=\Ū"Z|9uگbPkϗ X11NcjRD\⓺uFS ++-ݬ8޳E/WI>Qʈ0T<xr;O,'zFfwQ|Dv-'qvUp.QU(9]e LUDAfElνeS/%wIyvɈԄbʽAw +{tG.^'9<ɩ/V&URRk)lRh>./b8B۲ {y!Oao~Zmn\bR`.l\⦆n'r+zGB +H/4Æ v>wёs.x|=3Ytuf0i/[-4ģL Au/<Ԟa0Q@gfAua|]3ζN8SΫ Aåay(D$ |&T"ʤ;y1+{)gǨ2rdWU pF޸+{k;@,M2NЊR'kyBʄnK4 +*yn-SqSx=z{e7ȣ54 +SR;<w$kx]4s=N}oqVʛ^LHF>_`fxI\A~"s=fez2\ ӛKP,,V9;_(-mg1z< pvQ~hk[;hu؂aĸdW,N#+n򄾤.E*; 57ӏ_!u>fZYd#ؚl{q;#m$T]3`&SbGiʔȕMLm34iٞaAfit3B2*[@7|NQIdž5lc CcQwOh4iUkO0qSM0g[MoVi,D*3_BbKa?gj_ZXnbՎaM$$={4iQ{H9Lk<B@/eJUozE PůVF-㗋FPlj?XG}F-e{ +-@m7`E!{%Vq-_ +圗SRm[M-jk +JBWG80ccUK Cmn GkDXdmQd==)7ȁ᳠@כEDIRS3Dtg V*b))ags`Fm7nLCo!=qYSAX Pr2AN`| S+t5vnD-8Mٿ]F|q,1s4U!q]wdO"Z +:ܦ:*8Uȶd +d>` QQƃ85RdH֧2?"16ךD19P;^ʣr&2Y Xt@B\aM b _>Uf@h ~UThѳK2"OX_RUs:ӡ3e۷\{Q)KlVPYc:,?>~BADOS\3-[蛮/#sھ!~;e%dg$" B?2H=殙0)@yrJFG{| YKTT8@AsBSf8 7VGNƍK{mo\!ǭI3n o/9*ۻoGUj-c +yԫi U! M'¿9,^~1ieMF8cvSkbK[.ɩl'| ,n*D1A x=uF:ڷ5 TGyEؓҙo/+QH~.T3wƖ'qMo-vԲUr&tJ߬(e3'st.|H,=iJ`ywA dwmc`bd3KxDLR:8-W+/ +)˲PĆ5=e٭;qG`ȂW͠W3c?OC}2u˨I!QdqJ}-' OmXKQ +endstream +endobj +70 0 obj +<< +/Length1 721 +/Length2 6909 +/Length3 0 +/Length 7498 +/Filter /FlateDecode +>> +stream +xmwuTk5R5t 30 2tJ ]t4 +HJIy}}׻ַ~>g?g=k8X5'TD@DPX`a/",##PCAAh,  " +!!=Q0W4ۉo`A`0 G>9>}G( +]g +P3Zih5 P>`8 s"<g$ +'8!_x +EsF!=*u5!S5iiGeN("U? sBPH/ߴH?0Ax@}pACQ}$B Ŀ, C +s@0o X oϽC!0s$?G􍍁f|-euCL  ? >lZ῾#e"Dbqq hBA 3˿ߋAfNrn!E|㣎f|"s#G6^WS|_0I(Jy85nᲘ%jڨ6Ϝ(ݭ*Us,k'_y5?u̴M{G>tFrAZX5TIfuYx*h6h'gg~ʧd(MK~ 2@4KZ*,bfIvjA:7"I쮿eW3}ݔ0`o~ϔiRm.*2ua-ɗ!FYicD'jz>+dDBKx|'V6_x_w'ȽiB&Jw'M* {b#"߼p7)T)M¹hkXw6=Y,* ׷]ٌq +or>+'~\"&3P"><_{3z `<,G/oM >+f4h,h3Ʈ V=6dEMo1dnhe>/ȍrf SN`f]ȃ)%IFڪڕEi,n]t!T>sffVx]ͭ](pxu8^\Efa }0iOO nMl: 9]%iL #ǥdOxԓ4Vu|K* eOtn>ʿ1ډ6fWqiڄ︯OBٛn0?tZUc7$GdXP*=kDɠyBe/r-r8wlt9*[ +/{#NI53~rݡ0&xͮ >،}*6qDg%ҿG@j3KC 'eԩ 6짹3 '0wτ-}0|KH)'QAɸ nGCK=vrȐ޷?6j `#i9Iݝ“0u ^iV)g=qAp-`j*ǔAoS5ѝۆ>F:!jkTOTwq7OS7KD]a =Hh"xS#%o~+#+R:иa T<.l3_|V{{4.9jV Q^C)}RWG͖ +P$a6]mM_42TUjj͆m~KNT]16RR q->hlsFcs~ ~OAɳ<z*}oLsGKa[@h;U1o9Uxqeb~gf/^$@:W=CZ J";K 8 EAgzE.M/1!ݑmН=<2+gեrPɛQh4c|& Ͼ'|aׇeޤ/ZEԌYk>!wn?Zʡ9l e/2@g;?z2$铵ЦO4~C.iJؔrIkRDP4*PWw+TO8!CՓ$S&O,o]ULUh2v͐N9Ռs&вĭMhc&WwڌRlu'~p晻 1g2p˒>(+4v$ +pie`"!\3okWɥUT|NS?j K&?Rf ߠIeS[b[}{\w_SG'!Q31~XWΪwqjV +cOtg[}i*`Aw9nd!.b :pr3oX!S1Qyez1H1;ۗ3>NN+ᭆld 6Ufi YB3VMZⷀga%ڵwL^O88 xP̷w-7;kKj},cv&ub:qD{qӦ95"  +\YH${#)s`AXKn6Kݝ;c804rdYA74MAѡQ]$AJ'ݸ!􄕝M[KXeI͉tE"Tr}~is :u<1x=CmVyn25:A7|%55@x=dǍH>`ϱvBA}csoTur>KmY0s0G\ K-o9evVb*>䢻pKrZAf,LF ݄IՖ4;S)!Q޼񣮍@X=ah>c`"](umX^A"1Y2%L@ z߯wMK'ԎP&+b QLK /pb1Kk^1aaO145gZS瞍Q:Lc7slT6 +Ҁ,1k3;KY6PvŷJY,L] D^\}K*̍bWQp [GCYgm9U2sd% FO;P/w wo"6{^Bgʨ$e%XP<֦mx4;5 ɱJռHg?:S0k.O=Œ7&I} +1{]o}yHwwK: wlyzMtg؏jx6[݆)Qƾ5-JzVansf8Gfϥaos/Q=e}ւc1T1˨ ߏ1`hWg@FLuyn +%T]|,J9? -fZY0$atӫMG7<MNX2 ++t0jАUU@5%)r`%6.tY29=E/wlaE ӤY&(Zuj>Y"l_я 1b}Tϓ)Ks,И +nUoDnJTl~H 7z2UaӬm'a^kn~Yz?#4n.E/zMGR^Od,JJZΊ؉C-ا H5wk?\sutVrlm ;gפj 8߅}@9 (]jG2Ucًq|*1YݾfdE5läkFZ{1mDɝWjs3Ud4f5rv_JJi ď/<7ewt$|x +>n{Ł#٥ 2?Z_iy\q^(P'6Х{+a8sY|:0Lx@ +p}l^4)dh>`6A<3]oVŊ}%+ӟ=y[0 ." 3M-IY)^߫G{|+q"IbYLpp @Z-^: %4d L߉mcדm*}r<KwZ*_{f=uF\e&G'WfE +;R(nkK=$J0}]BuU~ ἅuֵiU;r .COvIM=*GE+ xOW-n"~_{z ?7 :Oԍ>~ZMMف9H~+yo* +ƒ0n;)o.B춬u^# 8P˶8':wDO*3~6U'gs)>hN.{4|~Nc0FVhՎh&NB +MٻȚl.cg+U1C,44#'`Lk)u*T/MFeIu:i8HQV$ 'ށOI@eBEwK2G?Z}N!V5W{ٟrf(Cm%ɧ Q v o%5akeO(kR![{Ma`s4s~L鲲>YQmyq3F6˒>v?eoJ]kfdU5  `7&b]rBYOm_Kv_Y}~7fŖ'‘Y S69v2~hu"^nRSm]7ٔ|޵ *Օ?ڱyg&mb|u_&> ӣfDt6rW\{t9Iܐt̺u_Uo nbVsnG թ9 C0]_ !<=ۼ a:q1aa7 T{Ү(kF3 +2J,B*Kn> 3䑆Z-ZSGFJS +endstream +endobj +72 0 obj +<< +/Length 741 +/Filter /FlateDecode +>> +stream +xmUMo0WxvHB!qmU^!1H__myݷDULG^͹t߷.k4c*S'ҵ>]g,yݔKeF$mS3&qGRp`I_3[dE4ݹn'&9綐7UaL)l:M z!YU0rўo>ν9},lj'}4>2]ݼ[ivjs92V+Vh ~y8&X-MmM|ŖE +LS7Њ~& +U +2X(pm +XX(W8X&LR4=zukTGEm7h8Kc`Iu(!a <#G >n-tJ!]O2`̏S#',<ؓL%qO8\π: 3ht +,+9ugCwËpD|ORɉ#ɇW +m藒1NwH=8! 4DCp&q"pBCT/9!ɨ~B }Rq҉TFIܨύ|nTs|neEA;~<6OIystg>O:yұϓN|I/|yI>O:yҹϓ.|R +T<띹_mKz}K=W7"V{/@̪X +endstream +endobj +73 0 obj +<< +/Length 494 +/Filter /FlateDecode +>> +stream +xmMo0 +!Rz|UAa۪V&$E +6~=HUAgɯ~uo$ƛLD- +t +@ZcNt=YNk`T=Ro æeCڕ(>Պ AiZsn[6uc^0Xah\je?0bprOY[AKS|dۙoF)MZ}4W@{YmG;<9`;K +(EytbabisbgEjq(po$}Idon-p!J m-O[L +endstream +endobj +74 0 obj +<< +/Length 696 +/Filter /FlateDecode +>> +stream +xmTMo0Wx$ +! 8l[jWHL7IPV=M̼ su;Uٛ=w]yil;<[[j<=?׾+v`&ߴț<^*;~&Q>MS >_P{=s@dkx;`VY`s4JaQܡn.Uu9\Y6><ٴ.Z.4>Dӗ}~r:-d0VWk,8yLһʮӮђ[*mLr?q 5F8@=@)& 8Rx uD\j2HV0CzL] bctI g$`htы0\F0s jd< I6zg W qȐ+#k .bsrbmXK7ǵH7Gnb>&jؐu1VljOu$՟qWS/%1{\xB!K(hHTЖ枃Jρϯv=k2UKς_:~$/ ~E+7ˢ/ l(/} -+ZXukoԝE?ZKq +endstream +endobj +75 0 obj +<< +/Length 695 +/Filter /FlateDecode +>> +stream +xmTMo0Wx$ +! 8l[jWHL7IPV=M̼ su;Uٛ=w]yil;<[[j<=?׾+v`&ߴț<^*;~&Q>MS'K}v}tƾ`R\ws*pWl:*;m_Ű=EB.=]6E%‡hWvE;^N +ƣՊU +ٟweӟQ?OIz^UU|ڕߵ6ZrbˢXEIS:.trA&TH>4"PX +H BM@5*08WfH AX v.2I## .zӘˈ0Qa8tcpN0A2 @݆s>^l>^wo_j4Rrtsľ x[%QLuQ.ݢT ܂PKߗp#}߂pMAM37CB2>*R{@8񩎤3 +}c$f O#z  ) +spW)9N{=g-_Z +~YK/t:/~e}Y%៍-t:UEk nmGkp\x{)ނ +endstream +endobj +76 0 obj +<< +/Length 739 +/Filter /FlateDecode +>> +stream +xmUMo0WxvHUdCmU^!1H#x?gx]OTm$|͜s_Iss :L;<Sz==׾f`*_`ɫڟk3'iѴ}=M;7rfnj-eSӵOLg~8 )ok A8 $`I\3`Af<Z]! +xNky"7 _㓧q +H`nḱRONH=CpB:# =%888QA~!*zƜАT?!~> tw8y*sύ +}nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> +stream +xmUMo0WxvHUdC۪TBb A!Gp?gxYOTm$|՜s_Iss :L;268{zb/}WUjWm?fd}Oi=7gRx=7i'Էf[7̖s ~ts[(:0p +l:5m_-tB}W{X8 jw]lj'OC=6}Ӿ|< D0,6;96ݕq4L MUWqS~Ӿ |Ҳ\Khv7RKs|*Z -1 +b[d08A  +i$C#.CZ\wF|TT<\`Gc)y ,<$g v1a粳[ RHדL1>g~8 䔷5 B{ $.  3qdAEBu7js"ܨF)EYQУ.?yRmTy'oOz>OZOyʄS&}/6>zչ{ZkZs}=?Fey +endstream +endobj +78 0 obj +<< +/Length 739 +/Filter /FlateDecode +>> +stream +xmUMo0WxvHUdC۪TBb A!Gp?gxYOTm$|՜s_Iss :L;268{zb/}WUjWm?fd}Oi=7gRd{nCN8oͰof-%6'&9Pu`L/"tkں(a[ +duS $xqa MN{}m}gىx` tw8y*sύ +}nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> +stream +xuUMo0WxvHB!۪TBb AI~=~/?g|{^OTn$+$977Y[~Sjsזk31{lΒr?In_ͯIy'SfA}`>[t}6Lsm!o=LLςt;b[h dU].Tx`d;ݻyLtun?7xZlO{?6æ_8^ߏI7l+76͛ ز(Vis Fjb|PE`)Ce0j*m!,,`qʼnre$E#.CZ\vF|TTtg<\`Gc)y ,<$gsv1a缳[ RHדL1>~8)k A8 $`I\3`A< Z]! +xNky"7 _㓧qrH`nk̀RONH=CpB:# =9888QN~!*zƜАdT?!~> tw8y*sύ +}nFE>7*QύR>7G;~<:O_Iystg>O:yұϓN|I/|yI>O:yҹϓ.|R +T<˝_mkzyS7=W7*#V{/zޮ +endstream +endobj +80 0 obj +<< +/Length 900 +/Filter /FlateDecode +>> +stream +xmUMo:W5?$R. d9M eCkmCp;;w~>|3E_?O]5߶w]Occ]=~?}Oyh9%?۹׬B|Ɯ>);vw%g43>\ 6 +EJ78 1{~`W(-;]%=xe_,b+-O;q\L}UI--=BKE1p[! +Mߊyu>.N5K)Wb٬8i[_uʕMzQ)V(Txޢjy!Z2P="Zd0\ÃGR\).2*Шa!U,H`+j.5Nα@VK-x%3%AYӀzΚ>kP#5m0Woþj.ZT$X/)n)#Wo(oRZ $Kp4Z-b\1ܰJ P"GXQi/8k^Zq:Zs9dB )sL-7xJ`aɽ)f$1 +dъcCZC<73JgznHȰYɚTa,_-O87}KԴܗLloK+gJ.GZyVc48Wt]:P~`rZq.n1] S/Pu7Ue:?&?!d&1yHn5)yғBx#1ޞ]Go׏M?X +endstream +endobj +81 0 obj +<< +/Length 900 +/Filter /FlateDecode +>> +stream +xmUMo:W5?$R. d9M eCkmCp;;w~>|3E_?O]5߶w]Occ]=~?}Oyh9%?۹׬B|Ɯ>);vz|N8}No)e0&h?q:P_ X}ac1+a  jҢ~]ߏ{_r)4i_px`!dZ>i]<U_cr%ͪcךv[\٤ժX*be-@E-X@-꩖xkM PY@ ,#bEA 5rEqIb>,彐A$ +G#e"&c D`%rE*s(Ǩ5ثCI*=ǔ^pk+ ܛbVLbX+@8:13Jp3<|6 ^ΜANVjRy9cpסAM}Ė)|֪,+pp70h8J+NK}Eլk)up >o U^g{_e{]*?`CBhgiیtV;۳ѝ)(ZK7bA;E^]|sQ +endstream +endobj +82 0 obj +<< +/Length 1022 +/Filter /FlateDecode +>> +stream +xmVMo8Wh҃kTHrضh^I IJ!ۇf|tǙqV}xܟ>ڿ7]Ocp{VcmOoel%v?~+W!D2ơñ_x+8L23Rö?]ߥa xe_,WyN5 !b^qwO y~vWҟRY ,0 A) >{ +t2TWI6TU2hxhPu"0FFSU LYK20;""JڂEEYbU9\Pw BBk[uXuRLIq2 ѠQx!%>1-Mm'[`PVn]7ɇ'[%cLE\ x >cԒM7ɭu8j{!Ԝb c HZ:vԕ Y2OOyzo=ʎ18(uU' 2F~xÐSռ\௨2q,zQԚжs]ҹTT;pꊊby U_1e8'T|vvMgdaޟhPK3j V37 <9'vCwlgb z AA]!<8ލh ~y%r~` z4ܣDNK9+ˏB]=vdi?G[<[Mv']1O4CM.17%a_'LrQT, ;Wg/z«Zu +oVxY+|ZW7 )#G!,"Ae UE$,"e ud >HYDBE$tYD*HXgiECo0rxw={+iJ/l1^1޾G\X`6: +endstream +endobj +83 0 obj +<< +/Length 720 +/Filter /FlateDecode +>> +stream +x}TMo0+J6*ħöUSEj9߯ IVcf͏睟ݛ{)^؝}]u:vzyu|CW$nmmΑmq5)M{`qjS5~uSo/LM5嚠06] Խκ#zŬO,ΊM[HɞҢniwut&!y9Nm^ŋ[yCӾ/:j6Qۃ+yX|[[ʪ+;w뭥܈uYn<80SPؽt[at/-5 @D@#P.P88P@z)3v :+~Kak8#< +HJs1?Ω84chV2gL{Q%#DrdQWύ \%_0)1 Tbo\3}7|~ t1<2]b>u$?=B͘J)ħ^wYLGmq|:t Ҕ~rsKjk/tiPECie],zh(G3J/Q +endstream +endobj +89 0 obj +<< +/Author()/Title(\376\377\000\040\040\023\000\040)/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0)/Keywords() +/CreationDate (D:20241112100346+01'00') +/ModDate (D:20241112100346+01'00') +/Trapped /False +/PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0) +>> +endobj +5 0 obj +<< +/Type /ObjStm +/N 61 +/First 463 +/Length 3031 +/Filter /FlateDecode +>> +stream +xڭZ[w9~W19iIlv}d';\|@m 2~1<R}U`)TLL+Ϥb &3yr, +` YnS9uyY`b4"xCw0r.)i L4`Xad4)p&iTpDr 24hf:q`P. +]1kUM[af=d@!^Ac. 8[H_żG sc^CXi1OI]@a "=.m{O2~ ½g%{ =`]d\㺂Hϊj2 +΋ 'ŰO 0d9|A f'vhy/{9coOfbK+.b\]H2Y@S$u>\C#U{OF|oP1?^M]Or׬rIQgÂOGr\eӛ)&?aj-ɗb,r<,{PeRJ;K-u( uC|?1"n<.H$i\ϕgty"eVL9o݃yF*'l +f}GaŌ&iP !.fc$["z3ر,3cɰQRz4ͣ5zM,m҃Ek4BKd2Վ +/7B246`#^ZLSQ.RCwAc(7)9Y'uT7==6Y= ii`;JTa.$.@Wm8@Yr!hHz׏IOs].K7Epsֆc=Up->ΠU+ֆO&Xم"f]>gl{x$a<-9PEʩ\ +M [pEqYjKO{BWq=k1 `f7-5t[B#i#RnPq$#lFgdCŇ8엃RcԿNFX$'{IRUɃע7 +rDR狺?*{Q.n E 71_k^1 q :^CT_?|G[TI?8jѦ*ZDm!]mO$Ը 9 㽓^ɋmp'K}{B^K\W?zVn:㣢o.?;==>)['w!oNAlp_o%Cf6l?G? S~[҂l`Ŭ ++ /GpUv2Q xyT~}zS#~ Sq'|rJ?񍊫:fOY9?EtPh_'H_W*f_.~9٫c Ƞ~[Hl[@dɖբ\8S8Iţy(S{yvptz+'H__6Gݪ٧܉_[;%7ǭV`O⦅Y,nūE~O-Cptp:X}9~u +?-W帬krp/'{'N^6P@Æjac{gecTVaN_ΏN•A(ùnvFtPtp>#a9TBvL;]`I7 +.7/aWE}ܱ|:.gUMPeW _뛊So'%0p3mph/ 6ШѬFШu4F+8ZnѻY;;1hG 8fw8k58nNn:h8ylq4e펥{jb1U + ,~w,G5<Qege7lq']j#x;z ^%?a/2v F vЗ 0?7w.XrZJ7/:,6/zd޶u9rX59/w9p2xr^gcz }4L>s󨸍M!5UE|Ԗ1mS饝*ozme~L/$7EQGHi^MN:Kɶ>)SܢYG>,4%.{Iv"Wow銟uѬo8–gvg +endstream +endobj +90 0 obj +<< +/Type /XRef +/Index [0 91] +/Size 91 +/W [1 3 1] +/Root 88 0 R +/Info 89 0 R +/ID [<96F043B94FB39E685CBD5B170DE1837A> <96F043B94FB39E685CBD5B170DE1837A>] +/Length 256 +/Filter /FlateDecode +>> +stream +x%н.qӢTUQZ;E`p]HD#h1k, H Ic9NY#2 `2F "|씕b k0P8@+"$Va V[ ^,A0CC~XV}*jeר~5&^RkB\yMJ'G^SEkZzHO^Ic9I~&? $*; eE釰Rxm& +endstream +endobj +startxref +139210 +%%EOF diff --git a/S1/ReMe/RM_WS2425_UE1-1.pdf b/S1/ReMe/RM_WS2425_UE1-1.pdf new file mode 100644 index 0000000..71c5e0d --- /dev/null +++ b/S1/ReMe/RM_WS2425_UE1-1.pdf @@ -0,0 +1,1014 @@ +%PDF-1.5 +% +7 0 obj +<< +/Type /Metadata /Subtype /XML +/Length 14669 +>> +stream + + + + + + + + Adobe PDF Schema + pdf + http://ns.adobe.com/pdf/1.3/ + + + + Trapped + Text + internal + Indication if the document has been modified to include trapping information + + + + + + XMP Media Management Schema + xmpMM + http://ns.adobe.com/xap/1.0/mm/ + + + + DocumentID + URI + internal + UUID based identifier for all versions and renditions of a document + + + InstanceID + URI + internal + UUID based identifier for specific incarnation of a document + + + VersionID + Text + internal + Document version identifier + + + RenditionClass + RenditionClass + internal + The manner in which a document is rendered + + + + + + PRISM Basic Metadata + prism + http://prismstandard.org/namespaces/basic/3.0/ + + + + complianceProfile + Text + internal + PRISM specification compliance profile to which this document adheres + + + publicationName + Text + external + Publication name + + + aggregationType + Text + external + Publication type + + + bookEdition + Text + external + Edition of the book in which the document was published + + + volume + Text + external + Publication volume number + + + number + Text + external + Publication issue number within a volume + + + pageRange + Text + external + Page range for the document within the print version of its publication + + + issn + Text + external + ISSN for the printed publication in which the document was published + + + eIssn + Text + external + ISSN for the electronic publication in which the document was published + + + isbn + Text + external + ISBN for the publication in which the document was published + + + doi + Text + external + Digital Object Identifier for the document + + + url + URL + external + URL at which the document can be found + + + byteCount + Integer + internal + Approximate file size in octets + + + pageCount + Integer + internal + Number of pages in the print version of the document + + + subtitle + Text + external + Document's subtitle + + + + + + + pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0 + + 1.5 + application/pdf + + + + + + + + 2024-11-06T16:27:22+01:00 + + + + + Text + + + + + de-1901 + + + 2024-11-06T16:27:22+01:00 + 2024-11-06T16:27:22+01:00 + 2024-11-06T16:27:22+01:00 + LaTeX with hyperref + uuid:b188dc9b-bbbb-4626-bf7f-262bb188d7f7 + uuid:67f7590a-ea33-4ef2-8a39-bb67aef759b1 + 1 + default + three + 1 + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +endstream +endobj +9 0 obj +<< +/Length 2966 +/Filter /FlateDecode +>> +stream +xZm~B&|' A\I&kS wrU\?w/+rE:N쐜>pϯ.zD+b+KGW7#c oZV29~m=af\7M7껑DiEBu7QriMkwQbxU5m>tM n^fn>tXD)P0C7'D50R+0*34R"ik+=f/nf5޶sM݀Yw#Sbd8T "18 T1?%}]sAKuƷ^6y*d**>:~<}_1)jA]k{5mKl,2oaE5PMǸ\1t=nkv"Z7-M1[{l]{W#葺%!N! +B$ ˺ٸ}D!KyܶߴnU%z<߾Tv q"ġ~ܮ:.(B%lhcGSK bMKQH^Bt4#i4-/~w]\>:HIѭŏuiصfј/CM1ڌxp?@ϔU)$1=! +d nh٠H>`D[Ӌŕ,m UUK-?V]S +Aa"G<edf>6@ AYH̹ ࢮEt b&+CYBg"#تl<և[=zQCG/7\Nj,6zD1O5m0;\h}>C12,ș_DBnBڕM4h/ŠXe :?0.5h`ûԻqi~pDIwM2H )MP/)<ɐ)a'=4G(Su۔{6A|">7$=ovHhAP>D60RNFP2Ugˮ^,bAXSPRLWfM\-9:PvYEw:#1P\a@fIHf*&;BY&l<;nR7Q@vyM `qE#ID(c橵G@?G` +ƴh +H +,! ?FZH,;xbO"$wڎ_9&:] \^5؈0ONܛCǷM:GKmXQDd_(y56+c?lw̱r=c)Sa=#N\qW˺[֎l=TZvSwQ|#9y+ƚv!ek8hs}0C Ti0y@gzG +74+w|rR N l(03O?!-Q@I'? dT981 Mtv χՁWbz,YphAG܉]$~/rB ;aA=9+ e` +^[,`_+7JR5_WvOz&׎pŽ2O;)P߹l>l3\rm<>@}b{Wy>peUh& }!6!?: i o$gW{a_gpۣ46$`HhQ +endstream +endobj +61 0 obj +<< +/Length1 1440 +/Length2 6302 +/Length3 0 +/Length 7284 +/Filter /FlateDecode +>> +stream +xڍt4]׶% z0`ƨ-х-ADD>ɓ}ok}u}>ڇIϐWnQÐ@>IP ' jEB㳚@P8L?JykS!opࡗ+(J$I2j< Jpw? y߿0'(!!A@ @t `(NH$?͓p@N' *r)` 0; }@ +C`.^0{p;PC Es8 _x +vp7w +s8@]!]U->/"\= odwK:V>O0WcV+ 0'4^9@aʰr7A= 8&!H(m` okDe@>  ^@\{( 8Ba~k8?  ן0WXWCUKO0WPBT H8k=s#? g,t!+J@D|'_QWwF^qraJ y;a7jC^nj AstAB=U{=(b5W( ]@n r{x7n (@o|i-d? uܖp#(w`"@N^nnoE{+7^[ooB3SpTs]DYڈ'5LN^ ':;lq6xnED~'j'~e6QʾE +xtF?=LB]0[;{x}5^-yl78*d.g'Ҽ7p$,'+=R?lW8H&`=P +}'oBI^3]A6h""֪X@&d[\,^7RKZq!nȵ;ү1b4Tu],80^>/%Vl0d&̑m*j[Twiqa~R/W5"Dh &1@ 'j)dw-pĶ9;UU,k3sVP7-_')=hhn\h\'7{Eʹ 1 T}CpwוGR>aҦ?uJ)C̟"|),]bl7Я9sKB#|zEũW]%Hڮf:f3q.rBn$R;NxX7x:ybl\hVr&eo0f}YAJW5~2 + hgk}ŅqN-ˆҬwܓ3;畑 e.6 &_|?8" +Hb۔ٖqdy6lnn*RyW Rk(S˜~ {k*R 6RD9z_k)1 J9:q$PI_1ο~A(=E87M.֞! |ȲAT״ѽz +Ѹ1Ǣϝ!`~*38y' T]۶֍; xPEcJbg;R +=vZű*8MP\:^}ܓOb:_8{y'EU48ͥh[[w6r(|I;?ʟ V4?U-.`8wXy{Vih8ȡ5Bȴn$!yoPYsig/x +?^Qb;j ^qAV5L=6kT%` m(@m]BKM8쫱͚kʼo_ /oQ, 55ClN/mfz@F +v胱բB;OӫVe/bphV/ce~NJeD,fcR8Y .C8HJ,^ i*aPZ¡y#vTɇE,5e¤ 9DJFZ?:daG$4"{ȆHpUne/+w?\%W؝ۇx%IU[SsAzPEMgb[ֱgXN1>Q'NiMJ3ɐl[I.J8䖡yUs2Q]_݅{ĒR>OHxQ[bU ͚xD5%57F},_5 ϹgI.[*#lҕzhX+Og&E<?UV6ӣ`<l2GTYMfd.|>-~T,;gAc]qtt<7]Hv +8HKw|{6e'ܣL+TR.#-,aϽw^~~K!Et*J5:JVj]Vc~EߚcSv!tc;0x?֕K.No|0_ +M%tCr3?(Y +u_≠b?`F#l~e]hj-"j`*"L yEzȎ4 +V># +N3Oh̪4-;a\x_徃t J;BE2:#깵Ϸܓ,%4vgKMc=n!m P8ـK;yz7 WK,UʰDEl`Q[{Lx@-G9r8FBo1* +wf/I_0 u+ GAQ(}&h'D>]C+́~RP ++E&A6=Q9fn&!M{@ r0H~sQ7{ S1u1bt;TTHenzfR:m^F+aï7E$uV, ԝ`Ha!Ï4V#_-}_C?KUŃzCF`:e՜P5]0xJ M[j45rwL- =Mxf̥$Fk -ڹaw&M"Y IGۜ;2񘂛[2m<3lmiUI)Kk,y{woy(?-:vJtD|D$eJ"i !sjܨ];AQxΠ8IMךVFp]gkL#}aqvg玩RyPn?%=' e4ЖV69:H=Oa4tHiVygUuSEa~e1$%ohiMbMԹ۴AoP)bt@,:Co*^(d\mO +xyE*[l/WS")kECgC9 +~p['to.lڨL_}=B{ySm׻&ҭ2b\ىSpkܧDI٩#O06:@DXEMV_{bSy3Y$%nՏaE?Q?eQߠ3gM44 r*at6V_RUkvY]F3AI`i +nbp _/!ĐκT.NaH0pA6TE_h^2]*rQ4V ~ⷢWߎ>2G4la7926}92yT~ÈL1ybkf``(%} i@h[6\@@L"6_jSѻA8ͥso:8g61F~d޵O4r ۹%)Gc:x:0t{j؍rn .V ?z>Bf|/=}M4{gcbeZ͗)l^XY#Ғ8e->Û56묯uRXU]=;@M~Qy_,f%']$9}zOL4ď21rOI9EG۾ge=%z`(|ovTC%P]A<[nJqMTԹ1s;3]D0ͱGw|z{#nt7D壯3ۘZ%Mw"B3NtͩUbSd'JwCZ>v-I054&Tz5d]8aC7 wtQQY^I3-N\< w*U BcaEp4+^DM ;gޘAX7-BƽwivFjGռ̧oyTLGUD8x|94v!5"]J?~[Ÿ/\t~>:54nfBxoQ De]Vల+ cX +lg^c;Fx` i/wiX+/7T5eR}}/ |֐8gaLUYSC?U] 5MT>uYf] f %sr5;/ /. M\)u7Pok2blmXfssVo! z=-fs ar"b'[dTcԲo +Hh$<êJ")`=N*[4 "R- +)XXwo+פ΅ iCT@R+5҈iGXDϰ^Mxl1dFIY4+#[ϢoξJh'JRng_*IZs# lIt Lױ}^wVޡݫ d弫Q1C.o{n4J=gO0}rcԹ{ӏO{e +CmxJJ];ݪ*q#}'{͢&#[x b1әc؅g/ǃA{YA+A͒.r۹Va lO*W)@br]JKFK^8X5"XҔ[7-N8v5̎o `9lTΨ2?m<8iԥ&%DD,!./ :t |û'v!%Z},nxQƚyh[Ac4Zzj*cɯ&TqkˋEO=pےD_,%u3 +tLF/ k]kg,QdBEBԉ<_?yuxQnhUvkՓ2EOq d}֍M5vJ'yux%< YRԷ&Zo+;WMRt=Aw]h yZ娴jr6ƹSiuKIދp_wG_I>YLqF:E =Dى]t$8)Uyy SҋLpki<{ ¢gΧO/(H29E z0uSkq õ=Hۮ +үX:Hg)T<-j c <ˤxX 1Lkfy:^Y΀/z;9C;{8\ +(wPy$0\Sm/z:]X:S-Cd&ѶͦqiN±XYǕ S4t*\(Qɶ Bhu-UfETCRqҭ)j?3y9/}4"**\Ipt/oz Y>ؑ1Am~21Eо*uk+cJ`NOrznxRKwҬe(*I:`Q=nY%s{;-:1F<өx^1yr< FV}Lyu~.vH3ZsOF F_ڸp|}PUdyV: VU[rq`H;w媩sD{>:m> +stream +xڍT.4)4E'ޫt @(IH"MIWt*U@"ҋtPAz>kݻgyo{y6Pe  $񓰱0.п$lFPC`6EKB]`XX,"A 8@hp(MB1s~prbb"<rPhA0PW쉶>x+#=<< h>A8h(j2@ + ˡx@PPؐp;( += AB5"\O?ѿ࿃!W$;a.P&~!.h6@lߥCr?mQ0$͇+ v +WW(&U" ޻pՆc$s{ USH9@1!z:`v= H= "ACܡ 1F$`0f@`pcP0v(' ϓVav?#ri?Nyy'W/A߿<_jp{W_b/φpL.AB [W"..?~++h!_1ՂW +i^ H/; =al_v_ C"а_l?>:c_#h6rAؕ/ .տP"~m0BAH"!vP 6`@hB @ V0@(a Uc +oa;~@P[ DSupI$N ?p%Gij)^?+sZT7Xҩ][${J s/Mѵc[8/ċQ=8;ezn>L`.QQin*Ԥa3Edo*t@ ht ɶSxJžYnΨ@u +%~EFy7oSبPn.p&Tk9m[HqN>e@R˧r"fØF]i0շ_B4ǻF>HQ3/uYկ5>AU2Ŋ7M&疟}P^/KGȸ1hctѬXps ;,&nz鑏e~[<[e<2{f76uґo璅f+ЯܻUggqs˭ZC2X;ҳ@mmt6 ֛F}y=Smy4+bK!ǫWtdo9Rp<#{JTZι<6ރMDA+y-*34ص[_L6OϪ5gfJGNz@sҕ-@z*芷l< '#Kl] ;|[SBRݥF<۫q͙IjQqxYA^ݜѽh:m.UNQlQZM?3Wc)]Zh>Pu lZ:&E?>;7R݈b˾נ00xywsZ3A nk}sri?$-qm9Orp͗;V1 <22ADr= ^.O55}e1uUv<րZ,vF Xǁw:y3V&r&Dܻ-9pt)XɈ'  +2xdy1*e0;]^$ob$U=%0a0߲fVVwI= G22~qķNeʋHKݬ*#.'DR_s鞳~cӌM3hř(m +JtSCVhh+’lSDyv'=EQ2{=9s'2g`1>FuM}9CU1++hzxs#$л5y9(k+RM\`dx6`5xͽ(lhm?Si+f'Gm=„j[-?w<j>S黫/zP{R3RLO +÷ _h2&8B; 2sLYh}ELN}4kX>I'܇^R %BJсtެOm̓#[vqQhҐpk Q-MC*J2BTIY˲bQR沚  = [ruJ*] I@12.R?M@W;+L1cyfGl!58D~ETMxttc\͸Dd~ƙ?괖䆽h詋.t,U|K'^miyGskkG&тV~KCJÝ}+CK +ԜA9Ʊ5!xE*EHkK{m-5%{P-^ $./F24)a@9Υ +~ok +Ervo3[V[mz{ⳛAI_eC%(^>1rJAa7/6pNtcu+?IՄ 'iKgMoK^ѷM˚ wxux/Z&1x3`ԸX4LS0/ ^/UEr7XYXN>\w(оe0a9ws~)7YQv$sxh$<#bqE6nEN5G%Bx  Ïost +.z̈RH>>j2 t^ċ"/}bp<רc{~dǽY6+gG-9b롻Vyތ-AFzӝ4'sߪ^ÓE1{VQeg'HEFjWE,ܓzBı()QT=p0zʏf̫_8uUIxi?3/tnY3Kܥ*j9Tuu[9\{6>Kc#TUx N>Ajw6C+f)+5 |9+?1hR g2 :.\\iyho_" pJTx\l# ЋgG{} cz9adtTRtvRIc +{Fɖ4!KJp3Xz] |f,^'ߴc}fEU)P?mgzƝBq7|~G/Ke Iӫ!?|J) "n26P:PA[Pü~noMF=q֒xY3_uRΫUs|zBj?QwCEI΀Iov˾o|L iH7`P:ZIj1V5ϑKK!u`mJڜ&e4]#YΡ f"Wy[\Ddfp>\y/LTW +|@5< S fkP@6&Id|)i" QP9!K^x<;K KV}:)7*ǴI*uS_iwo۴0F eQ/]o ,~X(gc`j7U(H$9]n,&󸭑Or +`($W^at1FI +^h Xݵ0O^x.E1`)I'i/o&9~A>Ewo~ + ++zͳ"*܏:s_/DoI5q? :Vv=suOkyCQg.CS̕*/&v4Driة}4j)&`b~L[5SsJ!_8[ZcWG$|$aoq&>Pi}k8OEܠ4Œ6H$a~ +c`c0+ȧNىI#]n٠ +wPͽ āwq Lи{?EK[AYSa֞fidwKZ`UAttD 2sOE_?xien_&ǂ BI5AO*DB*\2J.? 9,?BvO/.qڄz +itoSix5wԳv> ޼gH2{tWiG\͠5,r+c*{5d$i1ۂօ}frלx[rMDKp(pB8qSCh3<.X4SdQrMv-D<96 "I+p1 1fm$XhꆂvN5%}nN#^=߸T7e|wܟN6{"Y0m!t+t+w~c]Q:έp< :1 d/aZW5p>0NpvKA֫Gl6w mj%ⱟ[w`>GV )`fBAh #M-dʙa >i|юTcC`׺Idyz] JvWOZR`Jfaklt:[`I"0:ЀA(G-$OǏEpWRsg_^ʓusGei,67&_Y4(~J+8^T޹횳]rͼȔ4dߺ2C: ,2n!ްΌPzGg0Qѝ.E9'̇ o^ׄ7({d L8ujISC31`ʚ "U!TVt歳tkW/KaaK6=!ѡ:lRgiVCL9ZJ1-Qrׂ7XF(krw\#o7hZ3,i ɊC>l,5,\8.9>u\e,׭â窞xQ/y/gH2%ʡ*/ƀi<™w>xDYN,bDdWP͖jճ뉵wV~Y`8d/ +erjI0͏MEL?[aoOA\ihYy֕ܚ0|Mˤ#ɛH|,X59gmCh;xMGw9w;;Ek0oToH,"뉵nlO'T`aL 3)[sөހ ) w +endstream +endobj +65 0 obj +<< +/Length1 1401 +/Length2 6307 +/Length3 0 +/Length 7269 +/Filter /FlateDecode +>> +stream +xڍtTS.TtpC5I^Dz/BJ$tU:JAP@@PAޛtEsֽܻ+kyfޙwgۢl*($"550XX "ag7@`$Fpw4_Ew8)A1X& + p DLrG `Qa h +QH8]㎰w`+ w~.pw 4 DGp?JpI;`0^^^P^B`=8 ~ hA]& a ?~} g Dc3~ÿbý0)L*̱&ZmH'DȒөEA_;z +I,Ko4t꞉iX3{1$3x9S{y. ""tboD(d~4B'ɡ<9%U)>WWy}MhһrllnP Oo"'oq'GJdó78s72P8[]s(6?=`KKED;?Y6Ol'i:LrꍄF0q%q/gy+y;*فMM.L7N&,'V{Fj%<~GU[,77db:5APʹ3 U~{ +x)ڐXWH+OPQ!y@`uM/| oD@M31C_ڣ5U 8C!4ǝ7񥡏ߜHf֝຀p8iVb^WDYT% {d:-&EGo}&eX#grU_j6'VnZbfECA Ÿ6xl}\IЀC+¢/+/EÞՇm- +0د8_8>/vؿ}= 1dpI:c4si5CYPMt|W9"MA6!Z9N-1TAJLl:b._l+ +iFEobΘO?{RS &WGx(G _NԼIE+ruCvܹ[erV +t ?M ݯpU "* m D [Ugca2[z4ׯL@mr|!RSJMgkRLC +:0y&{vCGuTh8g(c#f٤Ukyjҙ_R{f.nnj. n8A hn{J]%C-Dӓ6#ՙUCVh22 uSrJR1tY=8:k%<Ȧl k^|z0^aMOFe|ɋn.g?})]y@0fW9`ܹ/9 +P +`e/heDz?T1 +H0?M"$w犺r:~(qf*&[%)zFU0*ww&{. +=2}wc@[?y*R2u*sږ3,ŀ .U/T_k mF?QKP$*Z9{dQ3pʟ"ϟHjqo돇NmoO0tim#=:ULfNzWkr-i+iFK)Xt=ƍ1.vo~ge80u}x #~byQu}b¶є!g蓓 +ElWk9{bȵͩNV?_5o/ғ{)'_v8V 48D L'C] FZjBzkqs re +t_[d-x(v?6q\C`{y7@]9e2c;$Vəj'ta4 ˒qy;ɱHp w'&?1O^I}儓;V1_fM盅$/UMs$516U* d:x-|rx/CC^B-ȼu!^[\,7y竘/_'cY~&!fb0`TkH/i%>|WX7I7a:I|-v)N.|4Pn5s¦J xFNM[YN?B"_Q], /Z\1RKU":_ ED@lœ% /:4J" +q'aeu%X鞇5{0F;5x8ΎCezTn9ޛ +/s]tIԆ^JJtj]yD=Gu]wĕzQGrH8ߖ͗Q:Yv{ N$V 锾Ŝ ݙzk FgWjSô_ +Ĉ=nu);w#avGJ+i{R@TWwof˲%s~]8"tGqܹhq`./V ?#jꆜb$4r|42rܨ;HyE(zu(g7KmIg+Wo9P<[3կ@jĮ/ ^lbujޙx6$zgFÞmԥ#1r +٪W? tV%8?1>MȊ3'-QUۻya!~@@I48Kۡp\GQы E=\,vKo(ЁJjtc]qʮ El߸YzR͉x.G͑'R OxTiw }| ^؝MX,?PB TgYk=[^DZJXzvȥʚ=iGo&'Ylb0c\yY]l:vT[ѷTtǧ㺩k#r1l,/hCQc)uBOSKO3N T "J=>L0-G./9My'Yz&H' :c96W8E{F24g`(!FTK47 O=nL!y!ZchlAge,xgR:# A46"ܮ[d1 KxZun `[\%˻/5殯r:/N%+JpT%*5rirxĜrh*;Z,;\6qj#Oo6> ^ԫ{1]cpέx<=YFCq̝^9c<7Yru :04f3_EjPE *jBy[d.,ıVp1&'!j@";*X&LȄ E:掿/GDHŽf/(W$JTWƥ^&iw5?*|ƳS +@6?sM]^Z}G}KwRݙ PJm@Yȫ5X?yN񍱪~Quk. ̨iro*p;rpP7= "V+{_T8"עt[0fUe@b:WXMf2_E *Xq%Ħȑ"@cd4;>.l%VڦVmqY_}q{w̛>,*|s"]#j,"+lq|Or +fF+ƪ22YJ6ιFR&eGCLR/p^Hpp ~`@xD'E|r 4f4\\/z KN ©89Xѽ.Ljw0vP4IB\m4@?3\c8a0+H9t:w6EbW+N&F}x蓜4(`e@"aܙ~uZ9oTdPN\Ο:! +sJKMD{m"ՐJݧn$7U3(27]ޘb$ϙMm"庣q[(w(?s8Zk[#W~T]3>q]]4rvۅP=Y 5$ƫENv+tCD*3$EuqeDz bhiks+V~ iNACWqj)WnWpҍ'LK{|uE7[]r艶?ҿ?e d N4H1iY.x#JvweW29Boda/'ɔ!~=SXcdz$nz]lFJ+eZ }g[LjnquXb-~1oᴧJ3yӇc%Ky,Y>0O"DB ٦A8o]i߯A]>8lg ꠦJt9r:-a2;?^O9Sڽ]Є)6U֮WJ4 k_>+IwK^u^<9])GʝG'*j2(?1ͤ$<)cYk\(i]/(XI2U2~P Z ęX˿p"֗u|}o9uFWRbNQ1v̍$_{v*-jc5u(Nd{Kމ^j SO)K!|r;m&yz$7(2}It7Q ,ȅ9|۵:~]!UB762w|.,ޮ +Y |pp}1w+Y᭑:BڣyAdYR AV0p%b:"[$h-U19 +ӗw +_ RI]P360aG,.i'0DV؝'qs[[thȝĿ:") +8P;Ie]3Nip$Љp쵻:Z?9ż4ޢ]OKï۱|62ooI#&%!~L`^y`zNRf1m'^;1Yo!{UTѧ&86:@Mv.}+ 1lg&_V%)ͯ;zs)X.yo!FNRn +F#U]J&/cHԇ%Moq5DAoY%T4}hE~ə ZWsufsHlˆt"$YRZ)>ܘ"`>_{ )e"}f:FpEWTM MML##XZiU>+8!.a>\AK7:[@4V{$a(.s{e Md0blBjw W> +stream +xڌt  +Vcgb۶mcLlhMVæac[a﷿v_5kst"P;:yX[ZG-u= PY<f 7eF͉ӓ hb)Dv\A. sJ@{п1!P4];Zy]@7MxsPU(;VWXXk?ڿ Y; 43sw:x[;X,@e)&7/7 M 9 % +%\\\\~[%An㓰vݛ:8z:XX;[N݉Y$+7% 9@^fV̿kx;a&exKomzAuzn. ߿!̭ Kk? [],o +`x;:ybJf_`=doی +?a+`7ڷ2O,-Rr|Zϐp}TMo+oCrM к-8_QmпK2v\Y7":X֮R^ sk73_-v8Z>+Ʒjپ׷zۜRqr..@o&!N/.b3ۛ +-= rqEE\f?,% ^7 Yb0KAlf?,y޼+Ao7Eiш]ս.yħiXY<Ӭ9\27F"8: /ٛWzX"_ s>kl]xxzD7STb)r8 EZHrRWј2jբ{)f'K$Eՠ@xA.8ź{#ɽ'O9^yQx;5٤ S +l`8u~nҒXKTPa# c{GneRE z^\nLέח&2hkP 0m˯=oygϲNTq(R9˵'tjZ6]#m9(K1|~rԎ*xZJFF3P|` + } ?(wA*/PV楐U~J]$tRn=V+T(*;c.j^wwziL{yr7+%Xl o4o#3#*S4tպ*^U$:QfLop++ޥ$b>Ñ9?ل=f;` ;n"{u_8C%롩9Vɨo JFӫ!TEz kEc@uE6@3{8kNs ?9ay(Xx'z҇U\@746^!<Ɏr 4l) ]YIkp߷S0E:t\nVwt&OHWҨ!A: zʨjU.nHˋ7+]67O KhU6 .>Ep <$!cⵚ#<9_S7aZlORC.^{ڑ0ihߖ5QJxH<y8`gIlkՕ_DI;.g1H .SBL'_?l2[dlIڧPt%|mjnk5B ] pb uZJ83M LtR$ +7 >XĈ&hqh ިHs\Bb0kbgATmF-kQGw33|⛜#Y\p x`hul i|tTJrv̹;yp.E +-vϚO*S9o|H$< -T~(~'4;ͼxCUaїiwNc %_n1/[Xw߳(䵢 z,79W|0Y4n笀)8nڑuq>-e Y}g^Գ{ud]H/.vٜVr $阱<v X^8f5?[ ++OC Ci9E9T +y J&S\ˬϊ"Gb Cs'޳]7s~Da&뷫&%PT F\gSLyŃQ5Qh&ӝ='@b<=+`pȯ]@/Խs/аi?8С \GFj9%qbT,y.o"0i,1I?[6Z.1]"fE8JG珰lG2إMk#1xFܩ4^ GﵖIGAWa6ÞxRtIgc}gIni2mUdjlnϊ?\w~L((˜zxET#yR6tI5KF'΍ҵK\Gx}nLD5$z D_[k;2MR.G:+ +%g`Է'wR8Z + خX/F-e΍PCV1zĕ>aen"Hw E!Zm+ŎB CS- 9Զ6TqA Uf:og4rQ f !}!2\ϓTM[>_ۘ;]lqKeS~=$r܃eX +!Dudd؉7)ŏƠDUJa]eP-{%3;sKXTdQg_V]{NjC{&+EDU +b:#q3{=IIq5wjР& i/n//&q8R^ݱ~:Ma"h\$iaBO|CZƿ ydYg |5}_HeZ@.ߨJƿA y,|Ĉr0!/jYzoIG||& հF:|P!+fuJbꜼ d} k;Fep0+4tOZp#L%R^]"*T~QsYq6p.+Ly|`yF5"]jri>GQsInS!z!tIńA[9`l{[{VFۇ'NSaD`֏G$p.Ic>#\ׂ*ۧ4NEJj%Qwʎ\L7EHRDqWś)VGۙ[[0H2b3,$ˉӠR:~;?XK,z7˰:l"0XcS!{y6 +rJUқFC3OC͚5[%CkBz|'ԓ?^uI0\(8E:JEt:yJYƥQ* A`)e h<\e 1=M(\}Rֳ*EMt Pt E lЙ!lFjrW鯏.ٕfmVD IZ2{='E92RÛ8hx ilX/O\z۰1?޸?&@<%G2{:Chw O=HO;y*ԃ* MҭEniWSR)5il-l N_?X;_cN,Nm$r J7gkb}S{d%x +-pdu?[0 Xq@ 3Jav]oe BL40@;eS_x-aw&g@K :/*QvG<^%f_nG,Jp%; 7 +t^1ᕏ{(dx|Hb">V^t^v8_VeaKYf7Jho9XO +gDINik[x&q=rmsvh`NĆbeNI~C)}椯d%ζHij֪<[zI $w}AFlp X8 b~R,Ӄ-QμtR4& K֑kd>2pg& GF ʒjQxѪeCޜ[CQ$Ml'0_Tկ`/b 6p=ԽL|3u0.eDJa Τ$y_w[;Wq<!!@O5>Ö=i\cw<veD +)SV[rg-zWl<6 SeC1{^|щiU%s7(aC,ͳ!W?>h?L) {OQ<Զ3h8z)Åo͡Hl}__Z1ys#sؿ~j9|ٖ$v Xc,{C+ؖ2dO$|ovdܥzK6i:%.ҍ%ФJ0N +kN ":d'δ+b҂eO 0_SQ%wZ p=X"+ ܦmБ.ia4w]p$X[N{Wň>t7K Ypih}Ƈ>cn; *b{|"P)cK%w1ofUenTQkC&d{gs;f_mʡ_o*d (gYc2G}i Zgp,XV9v*!ĢݷjE3‰=W-72>#At?%4 +hN C=s2888^RE= _%1nxXh_7)c [鑋~{wXQKx5|b Qǣ|& XU\gC<䗮oLl[xj-6:j 2D(M@պβ%`9|7jmC:,`[ĔbrC&93$pR80dJc*(8ɄQ‚E)<!ĹU懹+ fV׸-;ƇuM5&P\y*DNVُKzOFT=fCU灀7liu+ + eE sb`Hn/~T=[Q)9o:zI񯔹hB¿eyLYf 6;uCDAo +2^0maCÝ=1A7*qY6D}/WҖ| +JYv^>+sp]M.g**m2!_4[aܖ \-C}+i /UBxQK)} xܤotXpY 'C` +O5k}%y? ZLX-OcZӲu=9Z  cb@#BȰ8In;9彡DWE.D<=.ɥϤyPK0_x07\V;iW֘~8ɕm^L2M[f.'L;R8-~cEhm˗a-ʧN?ik'wd33^ɓa.ªn M. +%xmnjJ x’aMD%Aja 1>W]헇Vfo$DGY5\csyE)_D3i0QvBcK#mY +'_V˰騙0 /M[ihʴmg.ږtqP֐~KkN[bXUv& OɽXg7tဣ@m~8 ,9HDh< +jUn๰$]nrh8:ks0_f1BrQ#3#Y]tg`6S-/WZ>i".VlDtio82)_HM9HU7l3֟LNmp&7_6"c6m)~h3|tZb@:GZݖTkzyyWj5Zy矐i3w|sâ+,yĮ͘OJ *o)2i'S~sF?j;ZrI'Q@ + AAB u! &sa0Z׈dD@y!ij\,obd~"f Z5OU/k BUqeJ?j|4;tBFC j1ܵHɟkmP ֋u6-ks*Lr^* Cr_PM#q; iƬ6?;fG@F3\x(t㒼[v4iZW-(Ot< l< p}?9[⸀@z޼ oy/V/&h"jVܴl3mBфn"05_Z2?ףK4u +;c 6qaV#1M `>`+_X܁,5eH\6-, + IHJ7'S,OݍzwiG&q +FR&bB7μXx~y\汆L^|"\}vvҝ= pMCrT% ktskc{dSdY)hؤbhV%0@eaioZXeMIf u fuZ +k00-^QȫJj0tUs4&"/ZQk?I |(*MHb 5n]2r:۰bOxzȄ<1yGݢZ@+5JC|ȸ^k~4W Fa1a絘ZY1: V@4"OLa{bz{g3#Lk|OYk嗥=av,AvN=~%9i!>̍x&nd *c=>3,~/vMZm5ٱ| Þ|p7P:tʤw*8)/Xvin0DyW`S擵QmyœEM CügAzgN[S{sd +3f(@G`R:|F!-띾\>m/m~Vc7̟`y?Gt]'$9099ϩ'6)hqeOvnz2XhaǪdu- /QBuȿa=zNWFK=+)ܟʂ&BY([H}f0MEqckØ-(FO5/6N"%ӏc7ǭШZ!%+JV}R+-aa}* =XOa)'fDg,\{z7lyuҴwWm̯{K ^Z͎Z/`Y^QGH.H|@y: X ڋIdPNHV֟bC+2@\:rk<- M|v. ;r;>O;ň2wӼ's <QWڗ̈;==zb$=B;=f /(Ы +|5cytN%҅ۜ4-}b4",SY;B JB\q2 'Czo +wݍmI-jM<"UMz1E? TP v^_+t(v+}C{Xݗ om)f*+-6!uLɎ=@Ԑ%ɍnq-UmUYg&4ބC]@\XotjA;%iK<]*됬 CyO?6wv[86@tK^%S%=83NRr$ uyQA_o)YTF%2CAD1zLS_S.w mdBan_swIͨ}*oSK=v7|l+ x:IjY>8mp,_&/7{Gd݈%MJIJK1A\.J_0F+Z)Ԓ\@г$^ϟm8U;-1\&^~;pc%)H7n*gnZAᲽq0<] ׾gvA}FFi֨3#'`;=)h WАޤs[AKy_0QAA*#g l E/^9N9JG|R~y,ir mU%$dm( pXFn*þ7 +6Թƃ>J~FBqW4WkTҜչ.Z:l3SőEב!]1GOv|;O&@@|P8 ҷyZrʋUo?OT{-xoH?*hr IO4 +B馫.rid0?M f&qkl:m>2$phyJKnus.=H1Thn'Ʌ[4IdĿ@fz:&b/[f.d?HrnURXԄP/YufLӹl(AAyFgKW$z'&(HRʆ2Dfg=B1r&Yw/3T%MYv)HP4@ؼ囖ԙ_̧0+C`T:1=uxPt\wpJ.sƳ$mϻw½a:DވXŲUnҴm8<0VE8Y9ӰĢ53"qa {xOF[ä߿2!^qU|oi,E4R+Umh!yz5F Kq`$rzjBBRe\ǹCG|չ +\#B=<W~ GFoq\s'ǵb7} G +ՊE#&<~3ȤowG /9QSByb|rJ 4%MƸ)R8 vg#7X;ƺ@ĵ,F~{rO@?Z8=Fξ/A'?] 4V 5xnb/%H@TޖV^9aUj&Fb!zpX4Gτ:jQfU@SgMIz[.kZ>&cI&ܛz 2$eNgBeAl^S>^V2F#إin`ebbMW;.܁_mw|6M\9GۓF43ot M,135Ez"<1ZP'dgEeRl#!߹* Nï?Asu&}ofdOj:l4Sb*}?>@g?9q"zˎ0~jIϾ95}1^ WyIM?ϣ(59݂v_7{p"4C𜴵i cRۨGr RB.()ͯ/0%)6Q !tՏBe*i)nQ  M4wsJ_Ex3g%`3}/9m\~-J2ovUuC}}U>E[j GS7>;_TšX-xiK &Z0SV6W[4+nU3ABq@gq[=k`oq"݄o=K–iM3mjYPrOmEmtgq6m0\O.Mi-Z}pӱO94Z+ך<'32ʑ nY?Y>PtW52{="`B3&fH.3Ќ5hS8 QZDžp0QhOkТ!1Qo,O溮EzaFJy5QQť Nig}fcIZ_|z$r:is|M$\~$➧ecH!ҍwI! ~n3.c\=!{ߛ-P8to8bn`-N!hg@n$?9#> _:*[M\3u8r৖RN=L Q~1Y){E1X +na3 M/S_>i#ޕ%܉3҄.#kݫe{ + Sr^r^}H5b0Cpw>-׷e_2+| +Gٟ[pzpH1nޘIC~Uԕ}#){N z7X[ΐ9Ͱ/`4R^H'PVG9ǿ+S8O3hi mrAN"7i\G}x5@顃aF3!Aۦ#)Z.<,w 1j-7Uc2aPkf+ KX +Uc@Oab_͙ V-]ra=d;o"eTȠ\asJ|*ު<%Бb,Ye^(֎Oo\ͺ;eHN 0EhmgwF8lH B]ƇkA W&uY{!c?$Z颊̈́w{[f)Bdבy'kCzϣ^LRV:S 'CǮĉmԒì,99L:crj ]\g v}YY"$x5q4VsD|ωSr|xte eCZ` ;$1B~2*Qz7A)wyԆji".;3pHy + n[d{N}5čqYRyPwGGGfĺ#jH"l'rq wŘIRCm>Jb%gR)]p2,r Mf 1\3`')k+맅0fn +UODAr 7p5E7k]q`&~)BTcꌙ@k^[k"#.~7HCp5{X-< YУSxp +e5:U0ל9ח-a-60@⟢=D)p!2Oh#YIAz$-* 2XoH|&|<7bWb귃6C8^΁Xx8PFF+B\5IwQ6)I6 ̴* )Sٍë=Ķ =' 52E0Lp-ⅯL.K@ n<4p{FGg2!'(3W!k+x"k iRMxMWHճ5oBE⴪w< 앍Yn5*[aE+W=<i;Y!v6qש$:O͡0u#C|݌ԬJiKMKNUiސu kZ'FM +M6t6N`ZLS)H`hνq8g/loݽmpy` \(%gMkG{BǍ5>aְ}4"E^>?RV$`]!h^c'ʄa{QFcttףo9*ltka n[R5~1ޅ]jhAH\ɨ^b:: H +{ wr3AQ8/\)L"oDwt~"%e[.5k"Kǵ>%q])%vMlHZDعK}Jʼn0TWUGe?j.\)qpMك{!]|)T6ƚkmT}yOvrx;B;6"iU)Q4^ûahV6ĵhZjG΁o248he σ}])|G}N,ZHeRFU;jYX-J+Mc}QT1v{Ո)ʫd'4+LpSNՕqO_ 2KOzwFBw57*C`e"MvVx-@l8e#A<†k:NL =@Nv/nc0]}]Ls.n:#¦vEεŜCpt(,^n28ߩFAi$d5nŢ4P +8tBWLomW{G<^j[qPc0%oG> e\; +"j؛'UT 2•S*TMq07*qi}1Niyo"M=*Dߴۘ+3Trkr."r +, ow ͫmt#آތS6l7]&9=Oy_F߼K:$N<&Hb 0B0AJ"N| }Jy}UmpK$8Fi:)z.x~f%U[sW!k"GauMt: ڳij/Ȋ6\=>3? +D fVӤ0Pql?/4nY5X1ǟl-F_o} GڧOeyTtߍ|*ؒ5O@祅&7]7>]y7w, n6 +L*9).Avֺ(2܎܃пBi+0:<(C'*_[M{-R_gr4ApvCGZ4ćk EaRRa}ĤhH3l׿"î4@c2Cn` +R0H͖$ISkq#dKcHق-s&v;shj=aT0yk昺)]p+x]x2Z\/ςأS@7X} nCopT;lS@S^\.述E."P+Nh/хX7탻1l_kj'!ȗUwE'?*0\Sz¤D/TwڗpLBrEmpu$suE-fcXщ\[AӢeN +-yջ_A",)Oզ2q:=ax"d1$q>c +|)MWv DZp?LZ9qN1H58 c+--O%uXVˆ\(xWKN}bC(D-Ց!EBb_jTޗVo'9,<Ք񗈸vIu4sk.,,paBch,Nvٌ0aM@YIP^Fp syi}|+Rxp"]?4r,WTN/S=hjlId+2$ C_[IwP\angyC$;} WH{ $C^ȶiGH# 熼]ddt -ҽlh7jtd"ΦD#L+Jj _򅎢Nn`0*]Y_ҧGy8'()ěwVD|Xt= @>3'ʴ* +iĹ)ʧҀuYX|?6ꘃbxr +ْ>\iH Ylq-cHu* YȐHOɂ"v?̍L{(40g/N2)aavΐ:EPk+WUE!fiu}\rBK"h` %񘊚HjGFbB{QL +endstream +endobj +69 0 obj +<< +/Length1 1357 +/Length2 5962 +/Length3 0 +/Length 6896 +/Filter /FlateDecode +>> +stream +xڍWT}S@Q`FZA a` . AZ)0IES}{ν߷3 DE y4)@s8GJHӫ`4NA ;,K˃eA 8$/C$J; DH̛Ģ.h\PXNNF;@C! +eBfH(#+)/&' +E\~p+ CœB<`]fHgp( sA8P\n>c@h`Q+"= 8 +M+{n"prՂ'[C@ abc=a_b\AHO3X{QxC|a4Q'8 pGljaͣ <0-'$Z n*55$ "K`@wgc*@ ?}>_3!Xoۂ@P .E?hR-Kë}$4 Z4Uւc`Np4T-~#>(0:n7U0iRE:b4BAnR0N0oDH4k/DQ'.KHP +Gߋe7a0 J1=*Dkl?S'<4\z( 0zsBM!P&O8 tG~o1V̼\6Y֣<IH +,r̛`"A ^|81~`C7U"h3Q4zQ-'9`]e'[4)nyJS.S +{-ĵxEӓWyZkɼkk5rѶb6@W=?8OωN1d=qy)nB$JeaaA{WFITߝw +MY|1DL&H3[.r4{è~ǭ+Z^3yVvgWZc?tho"Bvyt5MVvg#$/?({bK<9g}rh@.8nihD鳒稠U!ou p^ UvApYgy_Waci-o{k=:=ka$ !!^1b$l4s\C +ur@mzB&n .E"MoqL9⩇U&&{2wHiWlijvYpڹٓPW i +sr)'ߏA_niE5c ߧ6I +TQa)Jub)i~ iy\@;zgS7X.LX}1IֶH_B\ (P#^NqH-~-B,CʕOSH),"NB=FӸ;VD=#$?[]yfȜ@%n}9ۯE@nl|M$]H2'v{Ļ` ِx3t;8+cz21y mJxӄd,oƷOk/Bg==H[,Ҹ7t: +uj*uݎD4XgTj' HF$K&I ZPL|. LzF#ov6AR~h3P!,)j6Uw"B|xp;kEs, wcu)[hQHn-sJ6N7DLiYJRKүlҔ(,{nܩlWST]3Mo )m W:G^6V#eJEI?vzcV3L(ߗ{`gӓrIxF`Z-+ <ϭ6Y@W_LħTľ^HF)HRR2et'nWȆ.:S2gY^-E_) ݙq͋]u1X6XQEwjdyу?yP:ũiY9h8ܠķ+<9Z{[O􆺳fnԉ]H<6x)Ɉg0ŷ.R5ꗘ9ud rFdz[g|oNWK:H!,ݘN%ӲrW#U^}\Lg6C{b╏^}]bɨrO%gZ$ϕnqEgd;˻1ƿ6%)z b2/+30TLNkevD_ V+6,18޽uۥo[p=U8$ 5}̥tJ;==U:]*8Kєk2Q-"kh]yj&p~Fӱ_Mlpxr{v +Xo]CZu[v~#[~S$1JȆhnϳ%E#!:JN[mg-ӽj*{[n~t^%E-g{M'RBM6NR Ɋ/uH79I\acKK@ѧXP|(tM İg8U-sɆwjꋼoK/Hlo7.l.rgn[˲>؃!Il:WaD>Eo^g~6 +ǯR,si;OT}Y-t7Xo/+1Y(X| BIijCNޖ5T^aϼci?dKM`Į +\mgH|~"=v]IC#[V`ȑPщC +BX _[1/.vy (1ެcF:BZ=sF7/ 2=R )L)< +ilϭ)ܬ݉> D5;c9;/Y;^'፳uHMt 5o_+dt\nXKEBzU_- &|V]<j-޹V;~EQ+G~mmFdR~{"k{YJ՚ݞF(h2h (3"c f['oc<^5#Sh߱YZ.%LSaf$6S%ɝٴ W1? B|VO%@6P<K*FG#O; +SE7w 7wmlI(fcc J{5{>L{D*c V/>`ZX|2=21Tl&֧B@zXḉflVh[ 8_7)Nvzz?en*|+}F0[Q=g/b lr-]go{䕙5%,INzPvvK/>9>n +02fqi_ldAdCj`?.<|%ժ_͏T`8> M=Ѷ\>+c xh|!Em߮`1ͣm+,P X8v9 +i+afM pYǕב٫f^t5t!w kd&*L +Ơ,o-) Rڎ\JS(d،f ,ȓBlܣcRuڑ#-CHQ«7a5Z`H5p]J7 a>/3,v;^5Ud:JYB; R;u e+1?<̝5RiTg>e::ZXlB_Y>ew;|c`qd65yH'f[+gBaf o\m?:n`x^8}Ca>5*7!^W7GF{nWh#ͮj:/?oɓjgd%gU!r@5}Bxڣ'UXO"*EkHs)k-*2)>s`DweEƁMؔFekvffB2#-I}b[|goIhŮ5^4ŧ]I8+.Uj ZP:Hߡ6lY9H&|% %6#=&N'UR2j;+Ktټ{|ASѥAxw]{!673 +`[QvuՓ-P>T~Z/N~-6)kǦQ'=*:2RP]xU!?>i$;!'#EÙfBsَCdq1t65"1=gK\nXPx +z3պW^D,#PLʣ{Jɚ9${,GƐ:q!'vc1Bwjaʧ Bo^B#v$OunK} +TD?sW~&aʐIoJ3Ite_a!=.OXڤj.8b0#c'!j~JKi58&Y>4*xΟU|8' 09o'ɱ+!䃁~ӟVDL,?ЧkM*ax?7XtX}D"Ҧ +=ǟs|bnф$⒁#?;_ uYŷp!B*ݕ*$24kAx%aΖd>pRc|'Ͼ)1Iqc(r\cSޕa5A]8e-V!v2q 'JەzȪ<7ke +#VZ$?N2J&RU{q!+i ?=rSo70kf~NǾYyaWaН!_ L)pI_g% w xjBHx-Bb7VY5 FBqX@ͼҼ2|iS Z83 +)!XVC_ѪL~Jw>6ԩi7J_-tW4,؛[_ߏT||l'"&ujxcV Gf]-x7<5NT] 1X4e7KQ3^a֯,$_rakV,/4jMfWf)n\0@+NLRU?W5u;p*%%m9Fl>%=zW|֜%NoR4ăJU:K@sC7FY4ɰq#yxW%nOO*9$t-Gd.iYdK%NJl R7A"-gdUyEZL$W2g=N +endstream +endobj +71 0 obj +<< +/Length1 1596 +/Length2 8075 +/Length3 0 +/Length 9131 +/Filter /FlateDecode +>> +stream +xڍT6Lt RJHH#10-HtJKHH7{[̻~VS]$92j\\<\\X:`Ţ˸apL7Ss / psq E kq W,zG'/- ?G%3($$ r[Cj0[<9h +- $ab#lA wWus8:`?5% +wpZ\m%UX௫9W 09 X! *0Z24:s RZsxujvr!:~rP+G>Y ~^ju9[VֿZrsԅ@JY!0 %  OK[_u@ax~>NNkx ?5j\@~>V0 ':Yw{~}>exc{ZJZ[%- asq\\ ̄h_%#@O[OM`w,uG8cAne ?Ew@~k~?Zs0/=n08_?9V f) Kʃ=AV`u- i:=(v [ei4\|SA-~m7? >b +N# vt5O!!/p3)7 \\|N?"  ON +YA7 pnql]@*NoK[ڒo|oOoc}",.0@Iɮ#{d܊حL&YHtѯ0P<]ï|=F78t"g NBx7w~1K7@p;Jk3rC2*s±iTNj>eoV]I;&-W.' LdJQѫmh9GW=NZ-\4z\SNW~i9i-U~0BF%wH~&h'X7b˛h2H(n@D1ǘ<495GnT3(Nc]-P-Qjv#;[jTWII ~cֱM(4!DJ%cz+ǕUq5J{;cE-N?a($Y YᘂUŃ.]3Cjx6Pqܯԏ͔trGVFŏFD()؜ ,;^O{mm)&' 1j-k%F>UyF13U2K+͍=:,kzWWAwi5a]o0+Tp6M[[CEժzBCb 9Ĕ}KMLīӰjOv 筝kcJS,ٱឪmb6'v3q|)tICh;i*5" +k!GvQ>ۿK!JcDSA ^1nlﴃD׌?ûZ7ʈ'Y/Q(9z>Ttq +$T%E)ztZ!|O"näcFoT#+:V_T?9 Cq4;k/ˢ2:e隒K$}l=xyy}37K!`omyM uˡ_(\ŋq~w%mauy+.ʤ;Vfj@)Nsg.a3Ͽm{[M〿wg4wICR)^d򅌜r5Ck[frN(!O>_pB,XDFA,V zvߥ7uZ4` +",[ۑuo]" @z%3(\XH+/~?,Cwk\T1td*, mrz.04'%}*ǣz;p;6z:D5nLgE'}~gjxDwqVClm#PLx>ed0\KDȜMXa_w}[禋bi]!鍈(:Zv7#YN v$M7:N1!i4љ8gZC6= zk6ȁG.$ja޵U.q/iz1P\d+M%bفIv{KQk;ctMZҒs|@( dBfhI ?JN}IK + t~ 8臖=/{"KA$􌎟tci+Kl$N ʙ#Sl Ҕ΍ -i0|;O ,gƁ!a'Di>Ά5ȒCkV(WPUJY!@&/lY P惾-H k& L`He[^c^*YF4އ[՚%1Z=>G]9~.*7To_mjg 0> #i豓.e'oRǼқ Ē]ez% NPema )7 ǴR/bqUͳ9$5âwvhI5BK߶*$))F=Mp yh +f +5Sl@*ݐ߲ڧ*7}X=SAiꪜ&l\ MJ}8isOE=q +c?&*ꑾʕ ޖ (>J'MU|ΏЛU/bsҼI{dm+t߹ڛ"QH,=0+5U&%6kY뻋/7uK[-qӸ'!!RG֡K])=jO-C91kN>ܥvY_p砒HxsJ $Vm)4tM)Gɞy O wsM,SK.H1[8/x#y&8M1/;(lbVIۋH[/onSPhۦ@ND_ *K~]toGup_i4!:Á}SivCQ77BGf:e̒Ej:kx;=u$o-'/(A,Nl 9/b3 0GbC QM;c #}fנa&wlvⷠpjg1יgoE?Ӊ%5f7咯2'%-G/O`Ӡk"8 +ڦˎLr HexVEp +G{=|΅׏(SСٟ5Ez!UgQt;1*as?D,5{R([_ ^7QMd HeamesUz!־8rMP Qv:w7? F.|X!Jv[ +W,FjmDZ{߳Rxv?Gyv:~fWN98p⼕\_7h%~Zuhھ)$F *B>5rɏ!%+?mGBU\~;9"C5T,rf(AZ^D V`'b/A"97ɞm" n: "-{9eP[+Ld.TN#SΎV&9=hbMVTW%6/ @ zqr3YFܙ׉ĭ?&n *TKwAޫEjPDgnWPsgI:>z-bx/xη)I-;C2pܮk{ ޟArQ&%! Lc+cnZ* +Yھp_#+U= Htcr(ȧ{ճ[ +a  7Rxe@3B`'w[ƈ}+vaRqAgm002!i=Z~<7Wb."uҰr? +~p$Kk}ԬzV*_H <#;?, iބnv6=?͠˚MYyr&)Y'75{kov +o=RCG3j,? +#J v,F{'LS|Y!xЙhq =n{OwD>m?tDa߄NU^`Oy)9Sq',;-E.MyW7bp\>djBH >^`H,3 TO:a O#6wƭ~}Cn%~sh5YtӍzy`P. K{GG,J~/%eoԵ'eh<@T^Gx*dd-O =sJJ>.'Yެs/WZ>4{͖fry -X ءeӣ՜/<8V:"&trbPsf؟T}oӏM/ [J"-~ m@u]mщKየU*q# +> +xHߜ./e2 hņ +k% +or0Ȟ7sEI16s+b6ƛZ@Ng#2j-.z)#5|u\EѮ&r€P˩>_j +Y(s+ZgVÂRV^}^"| askHiˑvuQPT\& ,\%'C_e.z)U\u8wFFd](MHrؓi{L!܎|K +5x%F-n̍d&ph(n#c%Rh ខs3ӎ1ke1$DSAf#sınB +VEn˗;?e^{@mN։H󆥳 TyX{&Mާb/PIw4Q<:-j&9Vʦ*pq/et2>,EDˋjcU9D+u]3,.9M"|qqG 1>ɓeW^a&6˝ +U+' D}Q\*x̯:^XENJ1"Jt)#$沯tk ӏ^Mo"IR2`!_e$?5IU!s]H`j&ōI.[[un&wOo NN!'VAcA`Qa 6JNwz'[ lZ8 PŚl%SGsR¸-b0JF͛* +e8BnEe_յv?p8Is/*!HN8I 9<WzR'35Qho\3>PMª{x7^ ^#'˅ *!$thL! o:esf'veܫELzɀF׳OBɜ\Q#Ck7>0;aww~|ST]-*jz "FE~VYUl߾ˣwD2?>߱$UCP! qV;-|X$I^UFPL"dSc$8b3jp1y)5DKMɾ +Xaa)o@c{79J]5iio^{hzD+j1.5#\7/u+#XݱsZa'S3 $DY@- +f+[W沇#b. μ +endstream +endobj +73 0 obj +<< +/Length1 1825 +/Length2 9798 +/Length3 0 +/Length 10941 +/Filter /FlateDecode +>> +stream +xڍweTj.tJHJHw0 0--Hwt4RJ#%w<|GwZ<{?{{Z?UbCda.l@vN!>ɅIO u`BP)8䂰I\T@B.NNap!4 jPa( ΘR0GO8q~ ?_ { +9T@.{ĉ`@ B\<+;;ޙcfC]g b6@d9vLz5o;(ruZ +5Gd MODPA`0 uXB 5YevVd Că@P;9W p33W -`!88cO +m`޿%W+:P'W?, +@5ǯC=!9̈>|aKD+_% r\_?0@0XA0gG!c +P!'B@Ͽ:9yu +,6[Rfظx9@NAA'3TG% wIhϢ0;* `8y9?oR,ߚd]b01@P;8 A +A^cI\@pwPgYB[4u~szfl@N! lxJA)Y7.^>yb".x@bZ@<2 XnO!BHC7phF<߈/p~#DNH"|`X~uar!rY@!p3M8 !YZpXZBH8j~ y#uDK_3Œ4>"@wb8\ߙ#1?Ƃ"/_rŹC 0 ,lSrY-Aζ>"rr6R`#3a1Nv(kbӦ*t{ޓ眍FvˊGF5g̾T$?\x gke&Z!HJkNTy3L{5i:c~/r Wy;lq-"`L;Setlˠ?:$ >Š˩A9_^+]`|7WFQ څgX?}fnɛԲ)ڡ&0y'˄96k3+ W?«7 *Pa*3G&O:>){(!*sWra4tW-~4~YpW"Sq,BlU.GpUV%,PX *[RٴEE(4:Rhw]lkPPp;3:T~KX1%=geP +qhF%㲼N"4Nh$-V@r%ګYGh~3xfz7k4M۞/݀(,&<4u&:V=2v,KAaob% 2DVv!Kq|m_ 9NӄDSOd&wەnzjIYD0D m@BJ6W@fQ0? :^W/^X"#Ⱦ캲 ɴhgGϒrD6ujmu6Z?:0&![8&;n{0qOF H¦~R?]a*;Z^xFSKbq[c6ƪ;<<*SW@,oJLIx) {,2i_:R6:ٮiOot$J*FA}xo`eF Rz۸YU +)~Sgjfebٴ{+)$i\ф͠mr'O*+]sN^Ycx}Ə"m(A?!wwޟsWF_ՌkHkÙ'ǰȟЇ<ྟ{i2$c;LJC+=I2Y +k ٖ޾Ρoo SCbU%ӫ.?qGVYޤU yJlW<zPe$(bGЮ&y%S򼯆sBI:D[6xL(']hh̏*?ȵX XN>|_M/:Ng[]QIW&iE7*&Eկ/A,+Pz.'Pؚ]MӐޢ.RK.MǰG}XvO弧0:etzJ¹8V'c[jh‰‚Ȗyю갣!/ٿ~A-5y$c=8ulQ@,7ۨ -C榩uhGE5ʊ;1oL먴 TP^"Q&vZ"ՙ1+3 +(\rGV[}/^k:]{&\򣾹Qwu:NGS4RARٶ\xcz{r+7ߊzqע5|sa =:I&c`wnSumVͼR&9X6oA3E<܄E:'i QTɝ Y|{8ޥ?wQ*?$Yew] ٯ*?ndM>ɥ/*HZ3?q;RLkѭODxhtx{GxDj^>p*J^äM`Z oY,t03Cj,87Z=e-ΜQf}nhfMFzϖV^ +l *q:Gwۋۮ{A-OpQLSUgK OpzuQJ͜beu6skj68}P4%Zxaf"K{(źюs'z/sg d!ۼQE}})kVMqT63s''sXjDZF,P%ހ#K\)ڲ|eӾtƘ5@ه/6u%2sw6*ח2Yo,?6qN6{MGijb4{[:b՜h2InϲS%5nM;`ZDcX p56j WcI˄Vbz278bՍ:0L7JlņC;~is{ѽkn(`K̫sI ko]px%Te]ljJA헍HE!iqR@.·k1oH{fDĶB4%}b_H+KHe_F{lYF + }r[>&0rG`MdӬ kaй7隷OlMOpmk . 4wE4ʥI+?1*$[rXJ +b@;0n(sp#n:|^tc[ž ]lsxsi $5W" D>khsm1>h}!XAt +4&J}TBxܻQg9k#3rmoZၽ4B)Q[723Z{#ѥJ+4_WMGM7J;Vnm}ˠiYe`Qɇ\=<5L̳ ?*JfXe}dQNH_E7mqoGW43rK3⹐^7>iģ( y/$'6r`r2%cQgagy) z$ONbMRNnkY|^dd}e6gIJJKz9)$Ned8Š{rǯ:IL+7sټZCU`^d"݆55^}V1Gzap .?FT4c/ݠg5EpQTEZ;_c<ajGqs=;u5W#8do6=ϤL ߏjy. a>^ǴM1}|0Il)lp%poȏyJ2J1+1p୮M-etN+ ӈcL_C N@Bt"IAL#kg*{sˉevh݇7*@n.(Hm N͒n@\3Ro6Kp-I4UdpE)9?{.Ґ+xGM/J} e?zLJZ\1G'>ȫw,kOAS3՘ir̟U,r/eN`1$G:JM?ծEoVKl87m~K0v$+ce_#U;{V%p)B ȩ5X;X >mB(&4qHna7L; z^G̡lUliP/O ؆ru2]:@"xۻY.ϙ*YvC];3ޠ?=e +3}6OUHI;hT"ۋ|SޔQ1-X+lGƂL6!u7~q]tS3."9rI3hJr^5P7N"`^|9ht sC;t>:څ0MvcɘKSQXg^슬J=W(y5lyI:N uiv-W'G-sRCw_Jۥ|[kшE^pk`uL>2Cغ9ktRڑˬ *%(gO0 0Z#MF@D]ʪsx#?6#G6F>|rz&%C IO3hx;KZ?Vv E)9Cǐ~ŽdvQCY$]F5?#m>fAYfGqH0XE}z$O;! jj~|j9{t+L[,DXTԘS'x)&b7I%A>J[imr+J {bL;Hlx^PSqP__m.Ũ j=^y&wub[ KVn?+̠R>j6WL{h iG2^/WlOYضw]( SȂF{B} z%X|3US=N%Mvy؂MĪt5Wc GzkIvDsYu%WȠ'c[*'(_Z{ GD̅AC&49g%bȸ, vlwR?Q4&?;O/jW:ax$\޸C(̞!8zwlg9edlmV?湴YF(8Ba.nI`K9-a#^4hk|,˯=;kp,IS<2⌟n-j􊌶Ҟxto$^4t**m>Q7{*?~ygHv"c,w.]pY%ܩ] oȕ؃TǜT]g#G~\&EKG .(GdA.KPkrCLI՟`l +ga'VchUw~aB~A%~cJ^ռ?Ԇe\]s,{nnsΗWvp'okr:kY ] +[wZѶ7p{*S*Bbx_gm7BQ|!䂛]$q͊ n~F&06_73R1SwfъͨVuĞLG4Ҏx<9h &un>{dq| D dz5{Ev,Kq+l_;6r{!Vp:{(\i9z+s4FOf,Nȥ.hNSۘ!k\JzM%Khx.5oItp >;ܴZqm 3SF0Q%Rp/rHSra~x /9 >&Ȇ1WhpFZwñ&;̸luxsYI#[mOP Bu<#%(ЈWFI2,3J<+Yh 0#U{p8sPؘ!KA7eaBY\0IN0im!qg|H4NJח@4N(tuy;wi4|Cr[yQ=_1D>WH +UCp]~N2"r6cs$3mL$Tu.\A.%>s;9 E;!^}# ?iAԍik 9 +endstream +endobj +75 0 obj +<< +/Length1 1399 +/Length2 6033 +/Length3 0 +/Length 6991 +/Filter /FlateDecode +>> +stream +xڍxTT6"t H  2CH +! JJ(H("7sk}ߚ羯ڜlFT@ e"@(&qrpv"N  +DB +Bclj 4Dt1 "dj /A"("NU- Pz @vz`*Ap) Gy^. +_`EA| ф8f0_S3` p@aBS`0"ȿ  ? pC =!ZB@~Ap ' w 1|(Bf*@~1/pH_D+gk 9v1Eā"}*'3Cp' sbQ ( O?WD"" 8A]`gǘ11}ugaM,t/ +((* DDD$1g$@v1w>8G 2@b @0"e_ix<?0Q>C-IW +y{W ¨Aa]!ݿ0 +1//aDÈ y0b4Ϻ0Klȟs֘8 PJ7B$ pFz:XL^a(KPm mG5V^9-!n/#;.j}?ᯬv&YLjdiNWqTӍ<5Z( b;:'l9]+޿r$X0 dp|NqlLhk˝j9wPGl.Ԧ.PrFΖΈ~׵Țc=l}<6L|,\#mBorHTGQaINiFaq%{Dq-8J.)hOnt1P e`ɻ)>'׳|䰑mM%%U) +g l8F ߋKZ?,-;~O B$݅dQ4y*FpgwWri*N*#m6U;B_*XS[-o:{aIVY};go),%unļę<\.MY%ID 13y3M 2CgIʙ_}&"& +|4ytCx/nq7<$'#aQB{.WRn$XnՖtؑrOyxo\c}=|f )^o'wڦVӰ {d1)QMuH㴅ЫgԹݍ0OFCUd ֫Cqc,BHJQ&EBXMDpEw4Z(/5=z>P1 q5(le(_]w`w>Z~+~ݕғBB+##ku[խH@"ZiC;AHKKVf,'%3ا߹gY5~ ѣ6qyz"?Nza()^!dqEF;O|1!&U*<6J#u+ شoſy} lf藌Ao%;hR[rֿ~5}(uHV1MS,zdY,O QmaӖSUIN{ȁʮ{ߚҲhL|LTqs\IgiFr:)i;97/+3}J CZ'l Z/q(fjEDR-q'<Y +Ih`w5/WOs>I\tby;0zҞBFa`fJ\嫁<3ZJv`:}7tcT3 |0B?Z6T>;6񅭙{pyfO'vRčfT+Wdkᤵ5{,6O} ժUNSĭ+o{,X"eL yBR:aufbDér*;a1!tGLY0`и'bhial`Ay8֡+'[Qu~ՠ&|SŻnPy1J.0Ƨǡd{^:`cfy~uyykz iwbFOYu@HΤ̑I]ՇlMUEv b_1#&F[[e~vLPU (DFK%!8z1~=-+B=RW#'ۋUqzZotߟ4f|%?Ok/ϾAD?(TOf>͙<+G A?YQRDXG<;w7l~ \^Kbnv^t|uَ?N @μ+Ko:?*(5+!|'/qRv煫Ϙiv qYQF >%{$yv"ʴImlZ~Y,K:3ZXwؗ]qw$JPMכVuH i1`Z&25V]Ao@}Ϧ8˖*˜7 -OZ_w]uZXfa~qBF| Ϡ.,_wt,Z"e0Ǔ@a nJ؀MbO7a/uQO>I>\xՖuC:YrpA[rF^)otĬ[[AM ~'ڹ_{jz68baMFiq'ܤu +>TpOD4>_2,O]SH"dBzj.l1|ϑmX3xnqo U#u}]><" ٭#ֳ}pՅm8hĎ{cR{ fSÆ竳aT +UD" / + +J "qnB*  +̫cwAۜ3t:/[ +{B3wbmS1GQYWYn9p2D*qaܳڵ0ؑ%7=W: &H;N9ťVo'J{ɢ;`dTMĭY'IKz+:jkے#\/ͣ/u2۹o|~5$3> G0Ȩ %%!xS*3r@k JQq +աp쯳)5OC5ZGhն8l!v&_(+}7Q3ƜN4An-=юtX1v +#i6$7yGvʭ@_2qb*[{e_NZH]4y șͪ9|cd΄PpA'e'42k벒_;`5jQZ\|@nT5xṂ4aq8 Oi U\xr9$';eB%hKwemh^Z &? 3gJXdktW\CAr+EOϻXk),V?V6_Sɋ[{#ǁ5n2~Qc}$sՕObXMz6z_3#dTGDQ#~GO4_GEWvL[wA%Y8{ek΅XnNñNie`̲|rco2)|XgYE܌-J2ZՖUg3+jF᜙mHq:EU\W>Z_&o=I=I'Q٫t_vurB^nDQ*$M} rcfo^zi=>#GW_U+vD hK 6ODهg*wþ#:vlW兢wGB) +-F(_]1K՛³^̕o~K%0ˏWrY3#H~TG fƂT|}O+*`n~E!.U$ƦbB8xMTöcB{qay'U w29җKRzHjT[bވvҝoX38^8 JS ү).ڙmB纁cWt}z}aGTnb,}|SQk;SCSPS?Y;|y]Ҹ5{Ui}XBz(s]szpy3|T T"7AQ-^k>v5%u=R\ҝzG{XU~A~V.FؾkVIXS68:t͵e} >փ2+F86evOS\9zv ekgUGvn~H9LXꙒزR-A{#[q[YTN O[h2|o~*a~ѲE=rC=Ua,*I;3}a8;]9JH#߬78K3{js'׆Qv V/UɻtY _G;g(9Xd<؍bO,Susp0gI1Q'NwβofOrBEgşBLy*&[*tl(\&l+}jzIB 80H_IvT0PR齱sg 3{F9p5’w`cގ/f +6&]4%d1'> +stream +xڍuT6RiPF7FZ:`ݝ"!!JH "% !!Ht<=;g'O\wFJ0- +Ut, $ +4F`NS8@!e +0U秋Bܝ"b@IY)Y( +BU!PWB1N7a]# TrP :]p7B!@#z+*+,)q@OhpW΄@cnzBp pF@H . ˁF:@=W8_'_ѿ!!P(F vg8P + a!.A8Clq+)!jE#\! W¿ব\\H,>Uō[f(O_;f TXHFRR\w½¿{E~}]Q@;\p@<@, >DD0 #`ݟ3nh qOϓ5^0Vl(/((#!JIF ?H;PO1]_K纏±V %M!7"t0C\9H @]D !]۪ǑYPD\$G`!0}2p_RsF ( ׻ / ϿUCBQ_:Bh7(n߾"8A^ B G + VՅHF,APt +!UƩ7yp%}*ýP$ +z'̱&JS /-щ]QX:W3ܔoOGN1myYeϧj\oVwWnvGdy5kvR,z ġJqJ"KyHW X:u{X -cZ0۝9kNT"MQ9Фӹmu:⯊x>qq;S=*$d9w>4x596+âKdK?gF3(uyxUWQG*Í#*s)?@fZox9UWJj#|[z-Fwm̲K ٍEwUEB ڒך^|.12i4nq6Z4;mRtL=ETnl]y , #k:G>rhQT`MQGw}UaK$2q}#DžݠQbXF  ֏D.y9-arуo5^W{hU-&}CpL,emU1}2k:⠅/#ENĕ%fE*kjs79N~Z` FkwP & 162=T'lib]41B8$wYitxyp[k~t!S?D/.%Pj8B@$d[Y`"a|0X sE w g)o=ǫow4LzN(8SAc"`neO |i{6'Qg$qP}u`)bCg}OԿ-+3LNS@ϖ !MGM jr^Z"_ aȓNe\(^77 >>bp+qT@kٍ _ =a(3텮6/u_ +HY-)!ݸy#1p?}_$ lkѪkjn ɠ|4 +>Da@.dհx}gPh(&~ӿ}jܱ*Mg<Td~òe%O2[XTFP_~["E|wfaM2+  +/3XՁ0Μ$ڳ? jCꌵ@N@r hU2|";6ku]JܔUTdz܏"3)͓N:9寨tTcjI o^k}p8yhGtSfΞ`9)+%oEQt9_r54P!d-<(mt(x=q2xa_k=uKS "J bfYo{>諭(q` -ati&0i)-$ +2ퟘJUN:" #Ue>[gBbdS]ޡvahkL7S[ycn8 [*-78~: ^fxRYe+z#irR$ϩ뇪Sgjϩ8f+wU=g σ{,#!oiJw.cfey^IJl/o +8<0tI MZk$!T\hsw$w74_ch;h M +-jd\0j^K 9t/Mi=PVU43 㴸,\Nq*?&zcvR3rO+obS;k"kLz-3\%yiƽdBxFMGvO(.=™W qB3Tخvp^"eElriʻ7>uؘg^r ~sE + +\ +xe”5ȳD(/K99fוNTE2zh7cztf>MldOږ7>--"U}ԥg15V:kՄ#r= R; EE(8J4;K빏J]<(~ +^Cc;EZ9J%GxO3RO%CZ R܎$:ujs1H@=~X7I*[&eưm>rU9W8ɜ0#}bXȚwB)wjf8v[.ħg;sƧG7#Q/c4f"`Ej߹ʬ+%^R^$mx/ <YT=įmnPnZj}4j=peRKTbuAPN<U!'|CaI`dFW=yt*Ӧj]'/>G:Z7SsEZFZ}.AKʙ,ҏ&35]#ɴOEG2m65yq\THz=Sykϝ6lK\>1%0(G'7s`PpDB[T9Iq^R?#eqQ)z:o ~,Im3(I% +HpiGCoZ&Cp}'-UـD:are>b7u4%d9Kg5M~ϑB6~Ċ/GY +as}{ko*_z?vpTWW>wh0 +m(%J9z'}Zke=E FQI-VXwS: qֽRD?VMiI|z1Xs?6< a4jƫ=ol`:<|JUӫ.7O k_xp4.t ?kY0ZBԇ&ԧ +m[z㥂%ѵCT!Mo-54蚸v3 +V }, wɓvɫ=lW{o[hT-&̧$K4ꄡhL⇡ɴ!z9ω?U?ldw^UBZUc%yu?SanAq++svqdG$쏓=}SPu>Y9\ydl)ћF[&Z+Cr1᳡E`f1i\jݩUMAFAB7ʒ^wsdMv>Ot#g w?9?x jxy8{pRl?uD1< 8˜ۄ HJ@Mt>yS|Zƻ_aqޚ!dk\Ȋ m3U;ZH\s=@!%[nP칵P0aP\5R鿂~GUAp=B"CkJ*Tl`wy'Gqq%0=։>瞄.fh&4ALʝf~GgDOʉ NΦ}ՖBO*d11 ghr1jQT{yoWI%e*[q|4ݪˌ. ,yI[}R 3zmHV'KSb-a(urp_KVl(!V[$F)b˘=.{<M۶#䛏G۱2=Rw-w"'Y33`&u+HU +]qhzr@ڝ{ KU-o}ؘYVYܤl:% YQw9 j=߀ պX%k2W0b!GNNelDIWD\]G?3弲KY +8jy'F|0S}LX^H܇72;_Įt_ID5W,tp2hu+th'JX:(m=\j%i'c6/:^~?*D UA#9R4s8{ϟM9^(ue4r* +W +8ut6nkꚉ]ZVJ%[IL;wsHCà:6'@b ,3I͐ +}񎙈dk9G@H]1q1ڬMQarЩ̺vĘyAJdeBߔf7쟾ӚzԽEQp.@N1߲wnSIyx`˒4OB%Y&_x'l' ݩmEOQhkSm#&/J!k#Ɵ3Bh63ޣ>lk?}XaBxUA}@m Co,Ͼf{ vJATWD2Gw(u +Aљ̽IQ'_h]?$_~G^Pg~""ɣQ҂4Zr?|Oov^0`QFmwì*F;7vr$o\ٞ9I{H(DVsu wW[{UӎWuSz>~x \y5ؓس!"DOCrpMŕ{w,Qkя ͵?Դ7t|2yWCHv"GRM;]iԷ:2v95e|׸Wu-s707ݎd Os]IL!)̏SQsKNwU +Z+yLCw??|voTClJܽt'DU`/hђbGV/)H锕+@~0?`Tq@Z Ӌ,|/~DcoLCjp> wA#AdžU^1ulw뮁R#{㖝ύ#̴BK'kqŵ~$dxm;+Ǩ +ka?i7}*f Pw^ ZrH;Qi?[јڸ#9F +sz֖m>',|_%*v.ɅНvqyVKڐP& +8!|} 董r|Ao!^év[ o+n HԲwst%7ƛ\ֱ7Բ(플sKkcJ2>hTϧ<@$! QɴV\#~fϋ) 1IɺU [8&CWs]W* bta kgj +)._Q36$x>jN|EBiہD),ó`J4G9U=̑F +~n/PzS?[@ĭTlg{Sp"ΓyB_KK(x0Ehɘ(BH +R&t/zEr=3-W|]#߼c>eX+=޷IzO_ӵ1s|ٚb=9v ;Ih\Ql*۷-h '`TlqV,' +endstream +endobj +79 0 obj +<< +/Length1 1469 +/Length2 8285 +/Length3 0 +/Length 9279 +/Filter /FlateDecode +>> +stream +xڍt4.GaD ( D{tQFND$~rZY7g}>y#"!8y*ڊ<nn^.nn6#6Ǐͨ qqav>0^9xx<υy nnpa jP ،p'/-aKVǟt#j T[Î` +AxG Q[I;r]lY9P-@ +qqX~ P;B m u+Fx] s}HqYA\jN_`] + ;:a^P )s!<07 +`9I a¿st:!\\g.p̲0+i#pݟ bp^/cYCaVֿǰrsnE1.l ?77 Hq@<-m7r v?wX?ZC}\ yxVPKbabp.POxܿ2y`/+)=N^~'<,:wjio-VR?0`э->POWf -6sp?AV?d`pC +aF?5 +@߮? h wxh3@ u7ScGϖn..C'{fn)bWtY!ăs}8SoM}S#HZ oNdF%P}>oj0LM*ՎhCМfeCvP+9ć-yQR ].\H +AA^\feRc- /mJts CSlo?vR:-gs*%Z,[ӦW,ZDFע5mzu<^zK%ib**S%b&I;ϛDXL sKnt7+PWw4T5)},5?V]gg?2%!t5@3c4ݔB0R'_?fYn.y!hi5(TOau 949L~uYX@mY8n\~CɔT4b0vn;J8 +mX3EyC}S OKvH?KTr:.o89ԒOI>o,JDj*v?cH>V3UEagНшAZ B:.-܏? it5'Yu٠X!5طU4cu;Ekhs^eƪl-?52tQQr0 mMSEF﨣ʰltD=Q|1TR7qZ$;.G7ŞP--˿VD3;w+` JGWA|QpذK0 ""V9XzM_&h-ۼ 3㭢hx(GΊ>?ɔh~e*/I_ʸ=B?j(z9FW@Yfҳ'Y\Teid/s~*~qRʍ0IjgPr;._k8{ZϭFtMjr + +Pmͅmhؼc T 7wOUQ;ӝ_tLpu֖IsǗ|ah"OOZDW_߱_N7"7 XLE1G3MmTtCpXrIhG##~iFfΛ8(CeJOrP_$Q\>wZ*B(Pq.{WS}_NSvKϣk@d~5Y97^<tu܊Y5+6*>KB5j|޵Zq|^Sz8"7C,T1kDןq>ἒtp$y)B5+;AƢmiʘ.0wuB"w[i`V< +h`lOW%l\da"LpELYl]\~⍉ N ZSӚ#=ۚNfo9RVCҲ~RʸxN_i(h>eIO"HSh1( (U_ɭۈڝ`}2,Gqkbm[3Y7orqp3{H$'ϳhY5,g2c:}v}<蚬T7~/ 1M^^++q:F7UCI@ 2d̅v;y_zLGAԊgNgĶl E=Os+u @L|v[]Q"3mZ[SKo!Ӛ1JOYKR.W.LISF-i*&'7$j=Mh" 0W},mq\$<ʨ\5Pp +%w[Ϥ9mĨ1ʬXdC!in$p '68c_]bkOG \:&6'km]$͂ ;vOXd-.}| p%ESY@&X˰KlN%ᜤ̾cA^I'!2k*lNl$헢@RX6:+ctZvʀpK/Ko^>o2 ɎbD2.&RiFSǾi[);IVUF@+=q|L6I_%5·3HiqXk5*KU%[j頇k)fBS;;U'CmO;hs iwCa̚*M2VT9<"RFT?lDaX1~ +_1œqez{qsVC[a Wa]8mc:w,J}+lg3`zELl4$5=m<.$तwqnPRߨl o()]̱o/Hg<L-_yأR ͺ5X|p/Ā73$Zr +Ryrn8q::&k3fkUVnh3o?o_2SNzwQѡ=OnJ_!/b#g` Xв#3`O}daANrQbmMB D +edʦG*&^{t/)aDZ!" fy}bs>dʦq usGc8bR5 m%C-;w#GZ06yrz2k+C܆o`MU +a,8uJV|kłKE1")G7G ,XFѮ4v} %86ԫCj1If&:H4_ip8tF ?< _iY+@Lk8ͤ~:_M- V'y On|,/!qIAA6>Oe.^E,>o)( qb?sQ{}u71~/gbV pVw۬uՑ>a_@g&t&v3"f `c]Dʚm+=8&Tjfwm̒un +hi _8]i'gc{c8^h((د(4VD6 |`o)sx^`>a@|Ix=D0#oȌԻ׻rgzA!t(ioY:CxYdo*/FB˚)K%J~k#7[Z/>fH鍘ޫTR}.'5ٔ 2ķwz0aܦ2 LlRl^*0CœMk 3򾚅CeCވ;ǃo+Mv<_v(d/[ԍfڋ+(RW]o"sI1L̈p_/#OeN!]s`Z=A\6v;/0K enG-0h%m%VED%W }٠ +wnjXPw&g8E/PMbrxMltɯ/{Qg8`Obr(}7׺WH: uK̾i03?FНp=lu6 nC:_]No H~ óqe~zS~@3xc >A$s)[=,MG ˰3S^"'ͩ#tuWsN/`^|d}]iɷgWؘ1,7ӀT.⪚ՁS+xݳėr?`'^& +f"x^ +:hg4z64GDʧ>۸^ҧ #-8u"I_svx߭ }^ksO@W"`l5o9ev (\;j/(;AIGl^%S ݮO%pT /}}^,۞0"ްŧ*Uyܶ6q >/&K} ~|80oa(\?VC.4f-Ȯa`N<_,C4x)J<Q!qZz癘aX82m%#Sc{o0_kEP[!J\f#ZL=ϞLeZɖuL9QFsiʯJBCzr@zO}DR*1FeyEӃGeP,u\b'~qK64ƕՔpz^#fe+:6' hk#_Ek,!\٬7A&F04_ArL& d^z6ՠ<l57so1C#qC?*O?BS!,±chgO]vuF"J$խ csYe,aRyR1Տu(EH#^dr  pZj= +K "XvvR>cdPz"Ix@Q!3L' x,h2>(LG>)m˵XvΪʐJDn&&QTA.7$|db$QBIxjH#՚Sr Œx5(%3]} EZu q_r2>k#dMNOGᖦTNQʹ+ITq-VޣvEmi^fY5f1omMܵp#`)}QT`hwyaXֺ u7DR]3m? DiZQJa-Z#kQɻ͜9j@z޻{}qX.HA8C +֞/%f2 ߭-j%ukfB"/–L6EԊGlVfB oSf*~S0K*|5P<@EZz~}&n@KΫlꔹ;<,^B& M{T`?kAat "6WHBJ1ͱJ/;Fegh/{+jw'Hwyվ : /2^ +Pgoߔ>#m#V\$tDn1a&G>=gW>ՍXof#t=Dxlu᦭[*q(M 4j_.:qyDQa s3I,dPsֶ#+/>1 Y ] RIwwОV +-z37LRE +eٔ(-S$5l]UeD8HNk 7"Œdrd;~AO“z?LiJ@HT4QpesҖYV(dSgČb}떹9Wv ֮%swJ>^ًąs/G +~&)ۥ +Vdw e|zYoէlb8L1p5ř#oI .$i 5(w,G}V2QYf~Fy%S>aK[(x|X_'t 8 4I}kzsov+zmN8ѬFب2K0,X'-Y⍿zZ9Rʻ}4T'(huEhtvm:'W B}bP]0t 0%iJG \ŞNr Z1jWM#l[!:AӘcª5(5Ctβ "? sJ̐'R ٨'F{/,w>GCLJPWl-x?N%_ ǧ昃1&0~2uaw]§^aѰ"fPOJudI9m;EhFKх#fwVx ǖ/m0XgaXNsn)q|A+gVJJkGdlxce|9_GeQf~as%Ck9Ġ1iTlO*IS$@g6 @M;eg}2gC8'4X,:SةO{+=%v}V$XY.vxc +3*xcgPG4'C,gwv}v4=7U HH֧,AܢOkz>"gbu` +[n}Nw4@4(piZK5^~ؾ6a$o! lJ`<* Y"~s+ޠtʌn*BЏ. +ڼ,f\oăp>àب:M(-az +endstream +endobj +81 0 obj +<< +/Length1 1306 +/Length2 1345 +/Length3 0 +/Length 2180 +/Filter /FlateDecode +>> +stream +xڍS 8Tޱ]EOQ-O2AR*Yk̬1&Q;]RNH؅JEI]ӖP.]8g h9Y]O1l ōidpqQ St' OvX"E0+pfJ gfjA[eA:j I,8c(,%bb p |8DB(pp,"^BBqWL a`%q"ɐHJ$ֆF@$e`-$'K#N8<0>.$0 B R"Cy'WN ` liMt qH + |DulW2)P|(B?OlzN'J1.%KF2 f{gD0KI %L7hاAy|e<"2nCH_l0T܌`r +1<)D abL Dp8‡?R +.a_;H4!\J0;1  +6S U|B(B)[re)o3b˄qo~H{| ' !2ѷ^'"v?P\L0\{kBgH"$*:10O<8t\BF1 |LBR)4$b;'G>0 +sIM1eL`~LK,qG D/a@QVCSOY7;9Vq5hi +JۍvZ=F*w\ɏ+ܕi0o(/Ź.ީ-/!k$%i14TbJY饹6y2eҾ55o_ݹOgxvhҖݭ)vH>Tů4,g5Pi/Xgn5 7D7Պ:3ya AM5o|I_Ԑ'{wζbAOliEiGs +2_fj4rgz9Gf[Wk3}/J9h~?Uk|4R[ٜNTش@__vdݼcp"=Oy\ظ+t38cZs2.-ӱ('5u]팴^Hb+M:wUz.& [G6Z̸9!k&lĕԭR?:I=tm/#Xa +RG"2dtOW'=nU$ǃ/:^-2YeINVyé<-GDUn+˝qcxitz8gdYBR%GMܸ}ŗʧns7xfkP*3SLP~PoT$\1 w7Wu}}flYSW-*Nyi/ }xzGxVQ³:3 +yFœ9.^o2js> +stream +xmMo0 +!Rz|UAa۪V&$E +6~=HUAgɯ~uo$ƛLD- +t +@ZcNt=YNk`T=Ro æeCڕ(>Պ AiZsn[6uc^0Xah\je?0bprOY[AKS|dۙoF)MZ}4W@{YmG;<9`;K +(EytbabisbgEjq(po$}Idon-p!J m-O[L +endstream +endobj +84 0 obj +<< +/Length 696 +/Filter /FlateDecode +>> +stream +xmTMo0Wx$ +! 8l[jWHL7IPV=M̼ su;Uٛ=w]yil;<[[j<=?׾+v`&ߴț<^*;~&Q>MS >_P{=s@dkx;`VY`s4JaQܡn.Uu9\Y6><ٴ.Z.4>Dӗ}~r:-d0VWk,8yLһʮӮђ[*mLr?q 5F8@=@)& 8Rx uD\j2HV0CzL] bctI g$`htы0\F0s jd< I6zg W qȐ+#k .bsrbmXK7ǵH7Gnb>&jؐu1VljOu$՟qWS/%1{\xB!K(hHTЖ枃Jρϯv=k2UKς_:~$/ ~E+7ˢ/ l(/} -+ZXukoԝE?ZKq +endstream +endobj +85 0 obj +<< +/Length 695 +/Filter /FlateDecode +>> +stream +xmTMo0Wx$ +! 8l[jWHL7IPV=M̼ su;Uٛ=w]yil;<[[j<=?׾+v`&ߴț<^*;~&Q>MS'K}v}tƾ`R\ws*pWl:*;m_Ű=EB.=]6E%‡hWvE;^N +ƣՊU +ٟweӟQ?OIz^UU|ڕߵ6ZrbˢXEIS:.trA&TH>4"PX +H BM@5*08WfH AX v.2I## .zӘˈ0Qa8tcpN0A2 @݆s>^l>^wo_j4Rrtsľ x[%QLuQ.ݢT ܂PKߗp#}߂pMAM37CB2>*R{@8񩎤3 +}c$f O#z  ) +spW)9N{=g-_Z +~YK/t:/~e}Y%៍-t:UEk nmGkp\x{)ނ +endstream +endobj +86 0 obj +<< +/Length 739 +/Filter /FlateDecode +>> +stream +xmUMo0WxvHUdCmU^!1H#x?gx]OTm$|͜s_Iss :L;<Sz==׾f`*_`ɫڟk3'iѴ}=M;7rfnj-eSӵOLg~8 )ok A8 $`I\3`Af<Z]! +xNky"7 _㓧q +H`nḱRONH=CpB:# =%888QA~!*zƜАT?!~> tw8y*sύ +}nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> +stream +xmUMo0WxvHUdC۪TBb A!Gp?gxYOTm$|՜s_Iss :L;268{zb/}WUjWm?fd}Oi=7gRx=7i'Էf[7̖s ~ts[(:0p +l:5m_-tB}W{X8 jw]lj'OC=6}Ӿ|< D0,6;96ݕq4L MUWqS~Ӿ |Ҳ\Khv7RKs|*Z -1 +b[d08A  +i$C#.CZ\wF|TT<\`Gc)y ,<$g v1a粳[ RHדL1>g~8 䔷5 B{ $.  3qdAEBu7js"ܨF)EYQУ.?yRmTy'oOz>OZOyʄS&}/6>zչ{ZkZs}=?Fey +endstream +endobj +88 0 obj +<< +/Length 739 +/Filter /FlateDecode +>> +stream +xmUMo0WxvHUdC۪TBb A!Gp?gxYOTm$|՜s_Iss :L;268{zb/}WUjWm?fd}Oi=7gRd{nCN8oͰof-%6'&9Pu`L/"tkں(a[ +duS $xqa MN{}m}gىx` tw8y*sύ +}nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> +stream +xuUMo0WxvHB!۪TBb AI~=~/?g|{^OTn$+$977Y[~Sjsזk31{lΒr?In_ͯIy'SfA}`>[t}6Lsm!o=LLςt;b[h dU].Tx`d;ݻyLtun?7xZlO{?6æ_8^ߏI7l+76͛ ز(Vis Fjb|PE`)Ce0j*m!,,`qʼnre$E#.CZ\vF|TTtg<\`Gc)y ,<$gsv1a缳[ RHדL1>~8)k A8 $`I\3`A< Z]! +xNky"7 _㓧qrH`nk̀RONH=CpB:# =9888QN~!*zƜАdT?!~> tw8y*sύ +}nFE>7*QύR>7G;~<:O_Iystg>O:yұϓN|I/|yI>O:yҹϓ.|R +T<˝_mkzyS7=W7*#V{/zޮ +endstream +endobj +90 0 obj +<< +/Length 900 +/Filter /FlateDecode +>> +stream +xmUMo:W5?$R. d9M eCkmCp;;w~>|3E_?O]5߶w]Occ]=~?}Oyh9%?۹׬B|Ɯ>);vw%g43>\ 6 +EJ78 1{~`W(-;]%=xe_,b+-O;q\L}UI--=BKE1p[! +Mߊyu>.N5K)Wb٬8i[_uʕMzQ)V(Txޢjy!Z2P="Zd0\ÃGR\).2*Шa!U,H`+j.5Nα@VK-x%3%AYӀzΚ>kP#5m0Woþj.ZT$X/)n)#Wo(oRZ $Kp4Z-b\1ܰJ P"GXQi/8k^Zq:Zs9dB )sL-7xJ`aɽ)f$1 +dъcCZC<73JgznHȰYɚTa,_-O87}KԴܗLloK+gJ.GZyVc48Wt]:P~`rZq.n1] S/Pu7Ue:?&?!d&1yHn5)yғBx#1ޞ]Go׏M?X +endstream +endobj +91 0 obj +<< +/Length 900 +/Filter /FlateDecode +>> +stream +xmUMo:W5?$R. d9M eCkmCp;;w~>|3E_?O]5߶w]Occ]=~?}Oyh9%?۹׬B|Ɯ>);vz|N8}No)e0&h?q:P_ X}ac1+a  jҢ~]ߏ{_r)4i_px`!dZ>i]<U_cr%ͪcךv[\٤ժX*be-@E-X@-꩖xkM PY@ ,#bEA 5rEqIb>,彐A$ +G#e"&c D`%rE*s(Ǩ5ثCI*=ǔ^pk+ ܛbVLbX+@8:13Jp3<|6 ^ΜANVjRy9cpסAM}Ė)|֪,+pp70h8J+NK}Eլk)up >o U^g{_e{]*?`CBhgiیtV;۳ѝ)(ZK7bA;E^]|sQ +endstream +endobj +92 0 obj +<< +/Length 750 +/Filter /FlateDecode +>> +stream +xmUMo0Wx$*B!qض*jn$H$3Ch<~3~~~ngjv9{C{K;K.k6㳵ችm#O7٦4\ =؏8ݿ߳4ւ8͌>sIvdXC6OLx9im$l6Dl_7ڞhz*{pɲ2kAʶC+mk>lpfIQTT?LA>J e .1PbpqH I$\kL8Hb،Shąr =z51XQg_s2Ē+ sC:CQ}.'c-BbOEu+Xg~:?aj +B.U $,ĨAA 2A%%" 19hM_)ELN 1sR3fg =傸aCYjV^w&L= 3nqFyDŽϠOL5'pZx?i^x?IGO:~I4ϼt~3][gF~Qgf}fB3y,h3cL}f23{,g>KYN0`^ay{7)q W7:*ሟS`R̯ +endstream +endobj +93 0 obj +<< +/Length 833 +/Filter /FlateDecode +>> +stream +xmUMo0Wx8T·~h[ +ۍT~3r#_)9۞c$_{t]P܂~ݣP_(&w(R|vp#P)->g_B?q8SG +AC۽[ia߿{2ZE_cf/1/{/4G+)bUUwkuTO4[@ 0@`%! #P .w)úp%KcJe Rͤ(*1:bDDR@ ȓ2UR*N)KIΡԀ0CS,km:5Bͦ&[Y{Ł@꒩)NMvSpJs}irphS ᐙ2L9ΙV}yXi8'z Ԛxq1GyלNZ1fXt:s0>wpVR.խr)>1qҾKvHX1iS5rM yR6FBlH>]6b 5&5&0a'evb_dfQTtQ]zK/WБ^Zz&孯ӷrW.&_rUOz䢓n9)C]!􁠧r7dE?_;~T?m +endstream +endobj +102 0 obj +<< +/Author()/Title(\376\377\000\040\040\023\000\040)/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0)/Keywords() +/CreationDate (D:20241106162722+01'00') +/ModDate (D:20241106162722+01'00') +/Trapped /False +/PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024/MacPorts 2024.70613_0) kpathsea version 6.4.0) +>> +endobj +5 0 obj +<< +/Type /ObjStm +/N 76 +/First 584 +/Length 3337 +/Filter /FlateDecode +>> +stream +xZ[o8~c4ͤm2i>;lSRڝ EM4+eJ0Q2!=92PL̈́e2Xl0 LK9ikt̔1% Ze::)͜ 뾔LY#d +AWcVG_ioҺ. BE&qCA0<$-5IH΀o  oOC"[ ґ2 +"2XϬp9ZjփJO`N̙@:x) +S,KiWB-`Cc SJ !,(u;$`a/ Mt\ +p& + B󢴖%D̉/0~ń¯?ٯb{/M+_ :/b Y5.9i᤺Ch\E>| I +nɾ}j)$ p4w !AWi/l@Y%"HX-@%J , BtnA8U8AU6 0RW8˲~+^j+RYP6Vr@]ڰ2"m#68 +6QR +t_n{UbNVڂm<8} !&B-G^ j6F}]<;_ *- !$z@O)US [Ωl5s*Ybr4sGU[ \Ph*KX-uT4lry^-~pEu c|zy:>d՗:{+D!>>(,18=:я>(:UJ(!#WE +PRC)bM +2(inI!A1“2 ׹LiES.3* qᅃt\/[oJEfD'oliwZGkw!Ir 111jL3ƽ\ycH 5aB6!Q @+w&|tc<%YxU h< MO|'ldYJKUeCJ@;\/Eq ~Lx#IY'FM'#=?Qj/.vӘ*XzHiT܌7Tt4F"ˤXS%*we<t*"a4 +Sݥ"qIxrecs(Kano#8*PM2Ó2V%FB94]  c\9MKD\6VKU\EnpƢ *bD0 +)N{T;9_䠡G}yK|rIf%!sꊢEFlʤKXNnW3c>fm v'/p{%ʟ%(۸#R\BMPe'¬ӆ<)?CΏs~O)_3~/+C F&c[~ůjV9l]^y7hx _/p p]nO97ߦ7՘|o +>]GM1KGϻjNg|`_̪/;ſoow5v1ڋ?;~JFpi3OmDkIvdC()>WI}(IDY;Hv{]l?L5)k;( +-"Ts b֊ϔVoQ[W u!RN Rӻ5DZ +A]Y+ .c +F-z|7oɵS*>~~8ʵ)wg9z\/%tVV|6/;w޾?=[^(?|ƫsWK˃7O|dlc,łdӶ#[X˶˝Ҫ\\ !ݧEEe8z}kKj"~3pX T|m񼾚7] GlG1W P +G_$}W{-^7{GFbKCӳXQF҇*qb{OYM>H¶r "ӑG+Rs5w֠L*e5c 1ڳ{hۣEk~>Mk7U|dYxi3|N g6zd$QugL$zlu(uXK>$_ +o‹$@tޓ0N)_m6:w6OyuzjO +Y,NI?[Jjϻ +endstream +endobj +103 0 obj +<< +/Type /XRef +/Index [0 104] +/Size 104 +/W [1 3 1] +/Root 101 0 R +/Info 102 0 R +/ID [ ] +/Length 273 +/Filter /FlateDecode +>> +stream +x9/pWu:gXA$^`*HDb  _>.yfh603kd,K +@B&a  + )XBH4A1@J! ery*:h)hEB;t@'tA7@ ze#ցA!IװW\D}HQisט;+!}K߾&&M:ǎ;Sx=u}m˰[^?, +endstream +endobj +startxref +129468 +%%EOF diff --git a/S1/ReMe/RM_WS2425_UE1.pdf b/S1/ReMe/RM_WS2425_UE1.pdf new file mode 100644 index 0000000..2da6d58 Binary files /dev/null and b/S1/ReMe/RM_WS2425_UE1.pdf differ diff --git a/S1/ReMe/Uebung.pdf b/S1/ReMe/Uebung.pdf new file mode 100644 index 0000000..7b5d9d0 Binary files /dev/null and b/S1/ReMe/Uebung.pdf differ diff --git a/S1/ReMe/Uebung.typ b/S1/ReMe/Uebung.typ new file mode 100644 index 0000000..cf97ac6 --- /dev/null +++ b/S1/ReMe/Uebung.typ @@ -0,0 +1,17 @@ += Uebung 2 + +$ min $ + +$max$ + +what hte $==> $ + +- Herleitung der Quotientenregel + +Um eine Gleichung der Form $a^x$ zu verschoenern, kann man $op(ln) ln $ auf beiden Seiten anwenden. + +Splittrick $(x-1)/(x+1) = (x-1+1-1)/(x+1) = (x+1)/(x+1) + (-1-1)/(x+1) = 1 - 2/(x+1)$ + +Herleitung von der Reihe von $sin$ sin + + diff --git a/S1/ReMe/VL17.pdf b/S1/ReMe/VL17.pdf new file mode 100644 index 0000000..c6f3001 Binary files /dev/null and b/S1/ReMe/VL17.pdf differ diff --git a/S1/ReMe/VL17.typ b/S1/ReMe/VL17.typ new file mode 100644 index 0000000..1254e6c --- /dev/null +++ b/S1/ReMe/VL17.typ @@ -0,0 +1,12 @@ += Kreuzprodukt + += Skalarprodukt + +== Spatsprodukt + += Matrizen + +sdf + +d +dsf diff --git a/S1/ReMe/VL18.pdf b/S1/ReMe/VL18.pdf new file mode 100644 index 0000000..74167a3 Binary files /dev/null and b/S1/ReMe/VL18.pdf differ diff --git a/S1/ReMe/VL18.typ b/S1/ReMe/VL18.typ new file mode 100644 index 0000000..2741913 --- /dev/null +++ b/S1/ReMe/VL18.typ @@ -0,0 +1,57 @@ +// 2025-01-06 09:05 + += Lineare Abbildungen + +Eine Abb. $f: V -> W$, zwischen VR $V$ und $W$ ueber $K$ ist linear wenn + +$ forall x, y in V space forall lambda in K: f(x+y) = f(x) + f(y) and f(lambda x) = lambda f(x) $ + += Matrizen und lineare Gleichungssysteme + +Eine Matrix ist gleichbedeutend zu einer linearen Abbildung. + +== Inhomogene LGS + +Sei $arrow(x)_"hom"$ Lsg. des homogenen LGS $A arrow(x)_"hom" = bb(0)$. + +Sei $arrow(x)_"part"$ Lsg. des inhomogenen LGS $A arrow(x)_"part" = arrow(c)$. + +$ A(arrow(x)_"hom" + arrow(x)_"part") = arrow(c) $ + +$arrow.r.curve$ Ein inhomogenes LGS hat genau dann eine eindeutige Lsg., wenn hom. Lsg. und inhom. Lsg. existieren. + +== Inverse + +Eine Matrix $A$ heisst invertierbar, wenn die zug. Abb. ein Isomorphismus ist. Die Matrix der Umkehrabb. heisst dann inverse Matrix $A^(-1)$. + +=== Eigenschaften + ++ jede invertierbare Matrix ist quadratisch ++ sind $A, B in K^(n times n)$, dann ist $ B = A^(-1) <=> A B = B A = E_n, quad E_n = (delta_(i j)) $ ++ ist $A$ invertierbar, so auch $A^(-1)$ ++ sind $A,B in K^(n times n)$ invertierbar, so auch $A B$ + +$arrow.r.curve$ Existiert inverse Matrix zur Kopf-Matrix eines inhom. LGS, so ist diese geloest durch $arrow(x) = A^(-1) arrow(c)$. + +== Determinante + +Diese ist relevant fuer das Loesen von LGS, invertieren von Matrizen, Subst. von Funktionen mehrerer Veraenderlicher und Eigenwertproblemen. + +$ n = 2, quad det(A) = abs(mat(a, b;c, d)) = a d - b c $ +$ n = 3, quad det(A) = abs(mat(a, b, c;d, e, f; g, h, i)) $ + +=== Laplace'scher Entwicklungssatz + +Determinante kannn nach beliebiger Zeile oder Spalte entickelt werden. + +$ det(A) = abs(mat(a_11, a_12, a_13;a_21, a_22, a_23; a_31, a_32, a_33)) = a_11 abs(mat(a_22, a_23; a_32, a_33)) - a_21 abs(mat(a_12, a_13; a_32, a_33)) + a_31 abs(mat(a_12, a_13;, a_22, a_23)) $ + +Allgemein gilt fuer $n >= 2$, $A in K^(n times n)$ + +$ det(A) = sum^n_(i=1) (-1)^(i+1) a_(i 1) U_(i 1), quad U:="Unterdeterminante an der Stelle" (i 1) $ + +== Transponierte + +Ist $A = (a_(i j))$, so ist die transponierte Matrix gegeben durch $a_(i j)^T = a_(j i)$.T +Fuer quadrasiche Matrizen bleibt die Determinante beim Transponieren gleich. Ferner gilt $(A B)^T = B^T A^T$. + diff --git a/S1/ReMe/VL19.pdf b/S1/ReMe/VL19.pdf new file mode 100644 index 0000000..69dc721 Binary files /dev/null and b/S1/ReMe/VL19.pdf differ diff --git a/S1/ReMe/VL19.typ b/S1/ReMe/VL19.typ new file mode 100644 index 0000000..e3462d6 --- /dev/null +++ b/S1/ReMe/VL19.typ @@ -0,0 +1,17 @@ +// 2025-01-07 13:02 + += Lineare Gleichungssysteme + +Das homogene LGS fuer $arrow(x)$ laesst sich nicht trivial loesen, +wenn die Spalten von A linear abhaengig sind. +okay +df +sdf +d +d +d + + += Mehr Determinanten + + diff --git a/S1/ReMe/VL4.pdf b/S1/ReMe/VL4.pdf new file mode 100644 index 0000000..4d2c7d1 Binary files /dev/null and b/S1/ReMe/VL4.pdf differ diff --git a/S1/ReMe/VL4.typ b/S1/ReMe/VL4.typ new file mode 100644 index 0000000..236e424 --- /dev/null +++ b/S1/ReMe/VL4.typ @@ -0,0 +1,21 @@ += 2024-11-04 08:42 + +d + +== Stetigkeit und Diffbarkeit +sdf + +Beispiel anhand der Funktion x^2 (bilden des Differenzenquotienten von Hand). + +Verschiedene Ableitungsregeln: + +- Additionsregel +- Produktregel +- Quotientenregel NAZ ZAN N^2 +- Kettenregel +- Umkehrregel (Nacharbeiten) + +== Ableitugn von Potenzreihen + +Sei f(x) eine Potenzreihe in Standardform. +Dann ist die Ableitung die Summe von der Potenzableitung angewendet. diff --git a/S1/ReMe/VL6.md b/S1/ReMe/VL6.md new file mode 100644 index 0000000..ab33e13 --- /dev/null +++ b/S1/ReMe/VL6.md @@ -0,0 +1,24 @@ +# 2024-11-11 08:19 + +## Potenzreihen + +Um einen Punkt x0. +Die Konvergenz ist ggf. auf ein Intervall beschraenkt. +Ein Konvergenzkriterium ist bspw. das Wurzel oder Quotientenkriterium. +> BSP: e^x = Die Reihe ueber x^n/n! -> r = oo + +Innerhalb des Konvergenzbereichs definiert die Potenzreihe eindeutig eine Funktion. + +## Entwickeln von Funktionen + +Blueprint: + +- Betrachten der Funktion +- Ansatz fuer Potenzreihe + - f(x) = a0 + a1x + a2 x**2 + ... +- Einsetzen des Entwicklungspunkts +- Ableitungen bilden +- Zusammenfassung in eine Reihe +- Konvergenzradius pruefen + +Zum Ableiten koennen wieder die Allgemeinen Ableitungen von Potenzreihen gebildet werden und dann einfach den Entwicklungspunkt einsetzen. diff --git a/S2/AnaMech/AMechVL1.pdf b/S2/AnaMech/AMechVL1.pdf new file mode 100644 index 0000000..c927465 Binary files /dev/null and b/S2/AnaMech/AMechVL1.pdf differ diff --git a/S2/AnaMech/AMechVL1.typ b/S2/AnaMech/AMechVL1.typ new file mode 100644 index 0000000..385745c --- /dev/null +++ b/S2/AnaMech/AMechVL1.typ @@ -0,0 +1,113 @@ +#import "./preamble.typ": * + +#show: conf.with(num: 4) += Einleitung + +Newton < Lagrange < Hamilton + +== Ziel der Analytischen Mechanik + +Dynamik von mechanischen Systemen (N Massepunkte) + +Aufstellen von BWGL mit der Forminvarianz + +Loesen von BWGLn. Hier gibt es nur wenig loesbare Beispiele: Zentralpotential und gekoppelte Oszillatoren. + +Erhaltungsgroessen & Symetrien beim Loesen ausnutzen und neue Erhaltungsgroessen auffinden. + +Newton <= Lagrange = Hamilton < Hamilton'sches Prinzip + +Abstraktionsweg: + +$"Kraefte" -> "Potentiale" -> "Lagrange-/ Hamiltonfunktion" -> "Wirkung"$ + +== Vorlesung + +24VL + +Newton'sche Mechanik (6VL) + +1D Probleme, Numerik, Reduktion auf DGL 1. Ordnung, Zentralpotential, Streuprobleme + +#example[ + Ich meine das PDF gibts auch online +] + += Notes + +Es wird ein Skript geben, welches vom letzten Jahr etwas umgebaut werden wird. + +Hoersaaluebung sei das wichtigste (Fr 16-18). Vielleicht sogar wichtiger und ersetzend zu den kleinen Uebungen. + +Donnerstag nach Ostern Vorstellung der TeamCaptains. Das sind irgendwelche Studierende, welche freiwillig Ansprechpartner fuer Fragen sein wollen und einen Kommunikationskanal zum Dozenten herstellen. + += Tafelanschriebe + +- Alles vom Standpunkt Newton mit Erhaltungsgroessen (6-7VL) +- Loesen vom Zentralkraftproblem + +== Newton Mechanik + +=== 1D Systeme + +Grundlage fuer die ersten Wochen + +Newton II. BWGL + +// Arrow und dot in typstar +// TODO: make it work with subscripts + +$ +dot(arrow(p)) = dif / (dif t) arrow(p) = m dot.double(r) = sum_(i=0)^(n) arrow(F_i) (arrow(r) dot(arrow(r))) +$ + +Dabei ist $arrow(r)$ ein Vektor in Kartesichen Koordinaten. + +Ziel: $arrow(r) = arrow(r)(t)$ bzw $x(t), y(t) z(t)$ also eine Lsg von @bwg durch das Anfangswertproblem + +$ + arrow(r)(t) = arrow(r_0) \ + dot(arrow(r))(t_0 ) = dot(arrow(r_0)) +$ + +#example[ + 1D Oszillator im Gravitationsfeld. + + Das KS wird so gewaehlt, dass $z$ zu einem kraeftefreien Punkt wird. $arrow(F_g) + arrow(F_r)(z) = arrow(0)$ + + $ + z = z(t) \ + arrow(F_g) = -m g \ + arrow(F_k) = -k z + m g = -k Delta l + $ + + BWGL: + + $ + m dot.double(z) = arrow(F_g) + arrow(F_k) = - m g - k z + m g\ + m dot.double(z) + k z = 0 + $ + + Gewoehnliche DGL 2. Ordnung in Zeit $t$ fuer $z=z(t)$ BWGL fuer $z$. + + - linear homogen, Koeffizienten konstant + + Standardloesungsansatz: + + $ + z(t) = z_0 e^(lambda t), z_0 in CC, lambda in CC + $ + + Ableiten und Einsetzen + $ + dot.double(z(t)) = z_0 lambda^2 e^(lambda t) ==> z_0 e^(lambda t) [lambda^2 + k/m] = 0, forall t + $ + + Lsg. $z_0 = 0 or lambda = p_m i omega_0, omega_0 = sqrt(k/m)$ +] + +Allgemeine Loesung des Beispiels: + +// TODO: mit dem Skript weiterschreiben zuende machen + + diff --git a/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.pdf b/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.pdf new file mode 100644 index 0000000..e514c1d Binary files /dev/null and b/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.pdf differ diff --git a/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.typ b/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.typ new file mode 100644 index 0000000..234f41b --- /dev/null +++ b/S2/AnaMech/AnaMech_Hahn_Penning_Zettel_1.typ @@ -0,0 +1,47 @@ +#import "./preamble.typ": *; #show: conf.with(num: 1, ueb: true) + += Aufgabe 1 + ++ Gegeben ist eine homogene gewoehnliche lineare Differentialgleichung zweiter Ordnung $dot.double(y) + a y = 0$. + Diese kann mittels eines Exponentialansatz $y = c e^(lambda t)$ geloest werden. + Umformen liefert fuer $lambda$ die beiden Loesungen $lambda_1$ und $lambda_2$ + + $ + (c_1 e^(lambda t))'' + (a c_2 e^(lambda t))' = 0\ + <==> c_1 lambda^2 e^(lambda t) + a c_2 lambda e^(lambda t) = 0\ + ==> lambda^2 + a lambda = 0\ + ==> lambda_1 = 0 and lambda_2 = -a. + $ + + Da die Nullfunktion nicht interessant ist folgt fuer die allgemeine Loesung: + + $ + y(t) = c_1 + c_2 e^(-a t) + $ + ++ Der Ansatz fuer das eindimentionsale Problem ist hier $x(t) = x_0 + v_0 t + 1/2 a t^2$. + + Einsetzen liefert die BWGL + + $ + r(t) = x(t) = x_0 + v_0 t - 1/2 g t^2. + $ + ++ Grundsaetzlich gilt, dass $nabla V(r) = arrow(F)(arrow(r))$. Es kann also das Kraftfeld integriert werden um das relative Potential zu erhalten. + $ + arrow(F)(arrow(r)) = (alpha) / (r^2 ) arrow(e)_(r) \ + + $ + + $ + arrow(F)(arrow(r)) = (beta) / (r^3 ) arrow(e)_(r) + $ + + #highlight[Wie das am besten rechen? Nutzen von Abkuerzungen.] + ++ Potentiale Ableiten. + + $ + dif / (dif x) kappa x^2 = 2 kappa x\ + dif / (dif x) V_0 sin^2 (kappa x) = + $ diff --git a/S2/AnaMech/UebungHA1.pdf b/S2/AnaMech/UebungHA1.pdf new file mode 100644 index 0000000..381cac5 Binary files /dev/null and b/S2/AnaMech/UebungHA1.pdf differ diff --git a/S2/AnaMech/VL1-Bremene.typ b/S2/AnaMech/VL1-Bremene.typ new file mode 100644 index 0000000..7bc984b --- /dev/null +++ b/S2/AnaMech/VL1-Bremene.typ @@ -0,0 +1,85 @@ +#import "./preamble.typ": * +#show: conf.with(num: 4) + += Studienleistungen + +- mind. 2x vorrechnen + += Integration + +#flashcard(0)[onw][ + sf +] + +Idee: + +- Differenzieren: +$ + F: I -> RR \ + F'(x) = lim_(x -> oo) +$ + +Die Idee ist nach einer Funktion zu fragen, welche die Vorschrift $F' = f$ erfuellt. + +Dazu kann in 2 Dimensionen der Flaecheninhalt unter dem Graphen der Funktion ermittelt werden. + +== Unbestimmte Integration + +Frage: + +Gegeben sei ein Intervall $I$ in RR und eine Funktion $f: I -> RR$ + +Finden wir $F: I -> RR$ mit $F' = f$? + +#definition[ + Gegeben: $I <= RR$ Intervall + + $F, f: I -> RR$ + + - $F$ eine Stammfunktion zu f auf I oder unbestimmtes +] + +Beachte: + +Gegeben seien Stammfunktionen $F_1, F_2$ zu $f$ + +$ + ==> (F_1 - F_2)'(x) = f(x) - f(x) = 0\ + ==> F_1 - F_2 "konstant auf" I +$ + +Man ueberprueft ob eine Funktion eine Stammfunktion ist anhand der Definition. + +Nicht jede Funktion hat eine Stammfunktion. + + +#theorem[ + Zwischenwertsatz fuer Ableitungen + + Sei $F: [a,b] -> RR$ diffb. + + $ + ==> F' "nimmt auf" (a,b) "jeden Wert zwischen" F'(a) "und" F'(b) "an". + $ +] + +#proof[ + // TODO: write this proof + +] + +Die Funktion, welche eine Stufenfunktion ist hat keine Stammfunktion, da sie im Widerspruch zu Satz @zws steht. + +#theorem[ + Summenregen fuer Integration + + Seien $I, I_0 "Intervalle in" RR$ uns $alpha_1, ... alpha_n in RR$ + + - Gegeben: + + $f_1, ...,f_n I -> RR $ + // TODO: zuende schreiben + +] + + diff --git a/S2/AnaMech/nolting.typ b/S2/AnaMech/nolting.typ new file mode 100644 index 0000000..ccbe0df --- /dev/null +++ b/S2/AnaMech/nolting.typ @@ -0,0 +1,32 @@ += Einfuehrung + +In der Newton-Mechanik werden physikalische Systeme mithilfe aller Massepunkte beschrieben. + +#flashcard(0)[Zwangsbedingung][ + Zwangsbedingungen sind Bedingungen, welche die freie Bewegung der Systemteilchen einschraenken (geometrische Bindungen). +] + +#flashcard(0)[Zwangskraefte][ + Zwangskraefte sind Kraefte, die die Zwangsbedingungen bewirken, also die freie Teilchenbewegung behindern (z.B. Afulagekraefte, Fadenspannungen). + +] + +#flashcard(0)[Holonome Zwangsbedingungen][ + Verknuepfungen der Teilchenkoordinaten und eventuell der Zeit in der Form + $ f_nu(r_1, r_2, ..., r_n, t) = 0, nu = 1, 2, ..., p. $ +] + +#flashcard(0)[Holonom, skleronome Zwangsbedingungen][ + Holonome Zwangsbedinungen mit zusaetzlich + $ + + $ + +] + + += Lagrange Formalismus + +Was muss ich auswendig lernen fuer den Lagrangeforalismus? + + diff --git a/S2/AnaMech/preamble.typ b/S2/AnaMech/preamble.typ new file mode 100644 index 0000000..ba829b3 --- /dev/null +++ b/S2/AnaMech/preamble.typ @@ -0,0 +1,16 @@ +#import "../../default.typ": * + +#let conf(num: none, ueb: false, body) = { + // Global settings + show: default + + // Set the header + if (ueb == false) [AnaMech \ Vorlesung #(num)] + if (ueb == true) [AnaMech \ Uebung #(num)] + + // Make the outline + outline() + + // load the document + body +} diff --git a/S2/DiffII/.anki b/S2/DiffII/.anki new file mode 100644 index 0000000..04caf8c --- /dev/null +++ b/S2/DiffII/.anki @@ -0,0 +1 @@ +University::Math::S2 diff --git a/S2/DiffII/VL/DiffVL1.pdf b/S2/DiffII/VL/DiffVL1.pdf new file mode 100644 index 0000000..d555df7 Binary files /dev/null and b/S2/DiffII/VL/DiffVL1.pdf differ diff --git a/S2/DiffII/VL/DiffVL1.typ b/S2/DiffII/VL/DiffVL1.typ new file mode 100644 index 0000000..d9504d2 --- /dev/null +++ b/S2/DiffII/VL/DiffVL1.typ @@ -0,0 +1,131 @@ +#import "../preamble.typ": * +#show: conf.with(num: 1) +#set heading(numbering: "1.1.") + +Tutorium ist immer Mi 2-6pm + +Tutoren sind Oscar Cossarat und Simon Fischer + +Das Hauptziel ist das Wissen aus dem ersten Semester ueber $f: RR -> RR$ auf meherer Dimensionen zu verallgemeinern. + += Topologische Grundbegriffe + +== Euklidischer Abstand im $RR^n$ + +In der Diff 1 haben wir Stetigkeit Diffbarkeit und Integrierbarkeit von Funktionen $f: [a, b] -> RR, a < b$ besprochen. + +Diese sind hier eindimensional und auf einem Kompaktum definiert. + +$==>$ Verallgemeinrerung zu Funktionen $f: DD = RR^m -> RR^n$ ? + +$==>$ Konvergenz im $RR^n$ ? + +#example[ + Auf $CC$ haben wir die Abstandsfunktion + $ + d(a, b) = abs(a-b), quad a,b in CC, + $ + wobei $abs(z) = abs(z_1+i z_2) := sqrt(z_1^2+z_2^2)$, $z_1, z_2 in RR$. +] + +#definition[ + Sei $n in NN$. Wir definieren die Euklidische Norm als die Funktion $||dot||: RR^n -> RR^+, quad (x_1, ..., x_n) |-> sqrt(x_1^2 + ... + x_n^2 )$. + + Wir definieren die euklidische Metrik $d: RR^n times RR^n -> RR, quad x, y |-> d(x, y) = norm(x+y)$. +] + +Wir schreiben $underline(x)$ fuer einen Vektor $x$. Ich werde einfache Symbole verwenden und nur im Notfall des Kontexts eine Unterscheidung machen.\ Erfuellt $d(x, y) = norm(x - y)$ die Eigenschaften einer Metrik? + +#definition[ + Ein metrischer Raum ist ein Tupel $(X, d_x)$ aus einer Menge $X$ und einer Funktion $d_x: X times X -> R^+$ mit drei Eigenschaften. + + + $d(x,x) = 0 and d(x,y) != 0, x != y $ + + Symetrie: $d(x,y) = d(y,x)$ + + Dreiecksungleichung +] + +Wir definieren das *Standard-Skalarprodukt* als $angle.l dot, dot angle.r: CC^n times CC^n -> CC$. + + +// TODO: add angles to typstar +#lemma[ + Cauchy-Schwarz Ungleichung + + Fuer $x, y in CC^n$ gilt $abs(angle.l x\, y angle.r) <= abs(x) dot abs(y)$ + + Die beiden Vektoren sind genau dann linear abhaengig, wenn Gleichheit gilt +] + +#proof[ + #highlight[TODO] +] + +#lemma[ + Die euklidische metrik $d: RR^n times RR^n -> RR, (x, y) -> abs(x - y)$ ist eine Metrik auf $RR^n$. +] + +#proof[ + #highlight[TODO] + // Hier wird der Teil 3 ueber das Ausschreiben von abs(x+y)^2 gemacht + // Dannach kann die Cauchy Schwarz ungleichung verwendet werden um eine Abschaetzung nach oben zu gewinnen + // Mit der binomischen +] + +== Konvergenz im $RR^n$ + +#remark[ + Sei $(X, d)$ ein metrischer Raum, $(a_k )_(k in NN)$ eine Folge in $X$ und $a in X$. Wir sagen, dass die Folge gegen $a$ konvergiert falls gilt: + $ + forall epsilon > 0 exists k_0: d(a_k, a) < epsilon, forall k >= k_0 + $ + alternativ: $lim_(k -> oo) d (a_k, a) = 0$. + + In dem Fall schreiben wir $lim_(n -> oo) a_k = a$. +] + +#lemma[ +Sei $x_k, k in NN$ eine Folge im $RR^n$ + mit $x_k = (x_(k,1), x_(k,2), ...)$ und $a = (a_1, ..., a_n)$. + + Dann konvergiert die Folge genau dann gegen $a$, wenn $lim_(n -> oo) x_(n,j) = a_j, forall 1 <= j <= n$. +] + +#proof[ + #highlight[TODO] + + Idee: verwende die Ungleichung $abs(x_k-a_l) <= abs(x_k-a) <= sum_(i=0)^(n) abs(x_k-a_l )$ +] + +#definition[ + Wir werden eine Folge im $RR^n$ beschraenkt, falls es eine Konstante $R>0$ gibt, sodass $d(0, a_k) < R, forall k in NN$ + + d.h $a_k in K_R(0), forall k in NN$ +] + +#remark[ + Ist eine Folge im $RR^n$ konvergent, so ist diese beschraenkt. +] + +#theorem[ + Bolzano-Weierstrass + + Eine beschraenkte Folge im $RR^n$ besitzt eine konvergente Teilfolge. + +] + +#proof[ + Induktion nach $n$. Fuer $n=1$ siehe Diff 1. + Angenommen @bolz gilt fuer ein $n in NN$ und es ist eine beschraenkte Folge im $RR^(n+1)$ gegeben. + + Dann ist diese Folge beschraenkt auf $RR^n$ eine beschraenkte folge mit konvergenter Teilfolge. + + #highlight[TODO] +] + +#theorem[ + $RR^n$ mit der euklidischen Metrik ist vollstaendig. +] + +#proof[ + Fuer eine Cauchyfolge F von Vektoren im $RR^n$ sind die Folgen der Komponenten wieder Cauchy-Folgen im $RR$. Diese haben wegen der Vollstaendigkeit von $RR$ einen Grenzwert. Nach @lem3 konvergiert also die Folge F. +] diff --git a/S2/DiffII/Zettel/Blatt_1.pdf b/S2/DiffII/Zettel/Blatt_1.pdf new file mode 100644 index 0000000..aa99286 Binary files /dev/null and b/S2/DiffII/Zettel/Blatt_1.pdf differ diff --git a/S2/DiffII/koenig.typ b/S2/DiffII/koenig.typ new file mode 100644 index 0000000..bf72ad1 --- /dev/null +++ b/S2/DiffII/koenig.typ @@ -0,0 +1,16 @@ += Grundlagen der Topologie + +== Definitionen + +== Saetze + + + +== Fragen + +== Aufgaben + += Stetigkeit + += Differentiation + diff --git a/S2/ExPhyII/VL/ExVL1.pdf b/S2/ExPhyII/VL/ExVL1.pdf new file mode 100644 index 0000000..c213ebc Binary files /dev/null and b/S2/ExPhyII/VL/ExVL1.pdf differ diff --git a/S2/ExPhyII/VL/ExVL1.typ b/S2/ExPhyII/VL/ExVL1.typ new file mode 100644 index 0000000..426f25e --- /dev/null +++ b/S2/ExPhyII/VL/ExVL1.typ @@ -0,0 +1,99 @@ +#import "../preamble.typ": *; #show: conf.with(num: 1, date: "16.04.2025") + += Organisatorisches + +== Behandelte Themen + +0. Einleitung 1VL ++ Elektrostatik (ohne zeitliche Veraenderung) 5VL ++ Elektrischer Strom 3VL ++ Statische Magnetfelder 3VL ++ Zeitlich veraendlerliche Felder 4VL ++ Maxwell Gleichungen 1VL ++ Elektrodynamische Schwingungen und Wechselstrom 3VL ++ Elektromagnetische Wellen 3VL ++ Kurzer Einblick in Relativitaet 2VL + +== Literatur + +- Demtroeder, Experimentalphysik II +- Fuer mathematische Grundlagen: Elektrodynamik - Eine Einfuehrung, Griffin + += 0. Einleitung + +- ExPhy II behandelt die Grundlagen der Statik und Dynamik von elektrischen Ladungen, Magnetfeldern und elektromagnetischen Wellen +- Ein Grossteil der Elektrostatik & Elektrodynamik kann in den sogenannten *Maxwell-Gleichungen* zusammengefasst werden + + $ + arrow(nabla) dot arrow(E) = (rho) / (epsilon_0), quad "(S)" \ + arrow(nabla) times arrow(E)=- (partial arrow(beta)) / (partial t), quad "(D)"\ + arrow(nabla) times arrow(B)= mu_0 j + (1) / (c^(0) ) (partial arrow(E)) / (partial t), quad "(D)" \ + arrow(nabla) dot arrow(B)=0, quad "(S)" + $ + + wobei $c: "Lichtgeschwindigkeit", mu_0 : "Magnetische feldkonstante", epsilon_0: "Elektrische Feldkonstante"$. Hier steht S fuer Statik und D fuer Dynamik. + + Zusaetlich wird die *Lorentzkraft* + + $ + arrow(F)=q(arrow(E)+arrow(v)times arrow(B)) + $ + + dafuer genutzt. + +In dieser Vorlesung naehern wir und dem Verstaendnis dieser Gleichungen langsam. +- Maxwell Gleichungen @max sind die #underline[grundlegenden Axiome der Elektrodynamik] +- Im statischen Fall ($arrow(B), arrow(E), rho, arrow(j)$ aendern sich nicht mit der Zeit) entkoppeln die Gleichungen die $arrow(E)$ und $arrow(B)$ +- Elektrizitaet und Magnetismus sind getrennt solagne Stroeme und Ladungen statisch sind + +Unterschied zwischen ruhenden und bewegten Ladungen wird anhand Lorentzkraft @lor klar. + +Rechte-Handregel:\ +$arrow(v): "Technische Stromrichtung (Daumen)"$\ +$arrow(B): "Magnetische Feldstaerke (Zeigefinger)"$\ +$arrow(F): "Kraftrichtung (Mittelfinger)"$ + +== 0.1 Vektroranalysis + +$arrow(E), arrow(B)$ sind Vektorfelder, d.h an jedem Raumpunkt ist ein Vektor spezifiziert.\ +#underline[Divergenz] eines Vektorfeldes ist Skalarprodukt vom Nabla-Operator $arrow(nabla)=(partial / (partial x), partial / (partial y), partial / (partial z) )$ mit dem Vektorfeld +$ +arrow(nabla) dot arrow(E) = (partial E_(x) ) / (partial x) + (partial E_(y) ) / (partial y) + (partial E_(z) ) / (partial z) +$ +diese trifft eine Aussage ueber das "Auseinanderdriften" oder die Quellstaerke an einem Punkt. + +Die #underline[Rotation] ist als Vektorprodukt des Nabla-Operators mit einem Vektorfeld definiert +$ + arrow(nabla)times arrow(e)=rot(arrow(E))=sum_(i,j,k) epsilon_(i,j,k) partial / (partial x_i) E_(j) hat(e)_(k) = ((partial E_(z) ) / (partial y) - (partial E_(y) ) / (partial z) , (partial E_(y) ) / (partial z) - (partial E_(z) ) / (partial x), (partial E_(y) ) / (partial x) - (partial E_(x) ) / (partial y) ,) +$ +sie stellt den Grad der "Verwirberlungen oder die Wirbelstaerke eines Feldes am einem Punkt dar. + +Der #underline[Gradient] einer skalaren Funktion $f(x, y, z)$ besteht aus den drei partiellen Ableitungen +$ + arrow(nabla)f = grad(f) = ((partial f) / (partial x), (partial f) / (partial y) ,(partial f) / (partial z) ). +$ +Weitere Deteils und Anwendnungen auf $arrow(E)$ & $arrow(B)$ Vektorfelder in Uebung & Vorlesung. + +== 0.2 Anfaenge der Elektrodynamik + +Geschicktlich fielen drei Phaenomene der Elektrodynamik auf, ohne dass Zusammenhaenge dazwischen erahnt wurden. ++ Licht ++ Elektrizitaet ++ Magnetismus +Diese wurden von verschiedenen Personen zu verschiedenen Zeiten entdeckt. +- Erste Gesetzmaessigketen des Lichts (Licht nimmt immer den kuerzesten Weg): Heron v. Alexandrea (ca. 60 n.Chr.) +- Elektrizitaet: Thales von Milet (600 n. Chr.), geriebener Bernstein (griechisch: "electron") zieht leichte Koerper an +- Magnetismus: Petrus Peregrinu (1269) fuehrte erste Beobachtungen zu magnetischen Feldlinien durch +- Gilbert (1544-1605) erkannte wichtigen Unterschied zu $arrow(E)$ & $arrow(B)$ Feldern: Magnete rufen Drehwirkung hervor, elektrische Kraft aeussert sich als Anziehungs-Kraft +Fuer weitere geschichtliche Entwicklung z.B. siehe Geschichte der Elektrizitaet, H. Bortias. + += 1. Elektrostatik + +== 1.1 Ladung und Coulomb Gesetz + +=== 1.1.1 Zusammenfassung historischer Beobachtungen + ++ Es existieren zwei verschiedene Ladungen (+,-), diese koennen durch ihre kraftwirkung aufeinander und Ablenkung in elektischen Feldern unterschieden werden. ++ Ladungen gleichen Vorzeichens stossen sich ab. Ladungen mit unterschiedlichen Vorzeichen ziehen sich an (*Unterschied* zur immer attraktiven Gravitation) ++ Ladungen sind an Teilchen gebunden, insbesondere Elektronen ($e^(-)$) und Protonen ($p^(+)$) dessen Ladung sich nicht mit der Geschwindigkeit aendert ++ Ladung der Elektronen und Protonen stellt die kleinste #underline[frei] beobachtete Ladungen dar (Ausnahmen stellen kurzlebige Teilchen dar) diff --git a/S2/ExPhyII/preamble.typ b/S2/ExPhyII/preamble.typ new file mode 100644 index 0000000..fc568d5 --- /dev/null +++ b/S2/ExPhyII/preamble.typ @@ -0,0 +1,18 @@ +#import "../../default.typ": * + +#let rot = math.op("rot") +#let grad = math.op("grad") + +#let conf(num: none, date: "", body) = { + // Global settings + show: default + + // Set the header + [ExPhy II \ Vorlesung #(num) \ #(date) \ Jonas Hahn] + + // Make the outline + outline() + + // load the document + body +} diff --git a/S2/Praktikum/Vorbesprechung.pdf b/S2/Praktikum/Vorbesprechung.pdf new file mode 100644 index 0000000..4254c2d Binary files /dev/null and b/S2/Praktikum/Vorbesprechung.pdf differ diff --git a/S2/Praktikum/Vorbesprechung.typ b/S2/Praktikum/Vorbesprechung.typ new file mode 100644 index 0000000..7b69a44 --- /dev/null +++ b/S2/Praktikum/Vorbesprechung.typ @@ -0,0 +1,3 @@ += Einleitung + +Folien sind auf StudIP verfuegbar. diff --git a/S2/Stundenplan.png b/S2/Stundenplan.png new file mode 100644 index 0000000..75ebfa1 Binary files /dev/null and b/S2/Stundenplan.png differ diff --git a/S2/input.txt b/S2/input.txt new file mode 100644 index 0000000..315fa5a --- /dev/null +++ b/S2/input.txt @@ -0,0 +1 @@ +# Input file for the current file of the semester diff --git a/S2/links.md b/S2/links.md new file mode 100644 index 0000000..5ebf77b --- /dev/null +++ b/S2/links.md @@ -0,0 +1,8 @@ +# Links +ExPhy Uebung Di 16-18 NR 7: +https://ecampus.uni-goettingen.de/h1/pages/cs/sys/portal/hisinoneIframePage.faces?id=studip&navigationPosition=link_studip&url=https%3A%2F%2Fstudip-ecampus.uni-goettingen.de%2Findex.php%3Fsso%3Dcasgoe%26cancel_login%3D1%26again%3Dyes%26redirect_to%3Dhttps%253A%252F%252Fstudip-ecampus.uni-goettingen.de%252Fdispatch.php%252Fmy_courses%26redirect_token%3D947a61f0a9df959879bce689abac0ffa + + +# Other modules +Zusammenhang Mensch und Natur; Modul B.Phy.1609 + diff --git a/courses.txt b/courses.txt new file mode 100644 index 0000000..aaaa2d0 --- /dev/null +++ b/courses.txt @@ -0,0 +1,37 @@ +# Physikbachelor GAU Goettingen + +## S1 + +AGLA Analytische Geometrie und Lineare Algebra 9CP +DiffI Differential und Integralrechnung I 9CP +ExPhyI Experimentalphysik I 6C +ReMe Rechenmethoden 6CP +GdCP Grundlagen der C-Programmierung 6CP +GdE Grundlagen des Experimentierens 0CP +PraktikumI Physikalisches Praktikum I 3CP + +## S2 + +ExPhyII Experimentalphysik II 6C +PraktikumII Praktikum zur Experimentalphysik II 3C +DiffII Differential und Integralrechnung II 9C +AnaMech Analytische Mechanik 8C +CWR Computergestuetztes Wissenschaftliches Rechnen 6C +CompNeu Computational Neuroscience Basics 3C + +## S3 + +ExPhyIII Experimentalphysik III +MaPhyIII Mathematik fuer Physikstudierende III +QP Quantenphysik + +## S4 + +ExPhyIV Experimentalphysik IV + +## S5 + +## S6 + +BaAr Bachelorarbeit 30CP + diff --git a/default.typ b/default.typ new file mode 100644 index 0000000..b85ae35 --- /dev/null +++ b/default.typ @@ -0,0 +1,42 @@ +#import "@preview/equate:0.2.1": equate +#import "@preview/quick-maths:0.2.1": shorthands +#import "./theorems.typ": * + +#let default(body) = { + // page setup + set page(margin: 2cm, numbering: "1") + set text(lang: "de", hyphenate: false) + // set par(justify: true) + + // equation setup + show ref: equate + show: equate.with(number-mode: "label", breakable: false) + set math.equation(numbering: "(1)", supplement: "Gl.", number-align: bottom) + show math.equation.where(block: false): it => box(it) + + // shorthands setup + show: shorthands.with( + ($*$, $dot.op$), + ($\\$, $without$), + ($+-$, $plus.minus$), + ($=>$, $arrow.r.double.long$), + ($=<$, $arrow.l.double.long$), + ($<=>$, $arrow.l.r.double.long$), + ($..$, $quad$), + ) + + // shiroa/zeta setup + body +} + +// symbol shortcuts +#let cmt = align(right, $wide |$) +#let Abb = math.op("Abb") +#let rel = math.op("R") +#let lin = math.op("lin") +#let arccot = math.op("arccot") + +// flashcards +#let flashcard(id, front, back) = { + back +} diff --git a/template.typ b/template.typ new file mode 100644 index 0000000..aabec9e --- /dev/null +++ b/template.typ @@ -0,0 +1,8 @@ +#import "./preamble.typ": * + +#show: conf.with(num: 1) + += Uebersicht + + + diff --git a/theorems.typ b/theorems.typ new file mode 100644 index 0000000..cb98965 --- /dev/null +++ b/theorems.typ @@ -0,0 +1,24 @@ +#import "@preview/ctheorems:1.1.3": * + +// What is this for? +// #show: thmrules.with(qed-symbol: $square$) + + +// TODO: Set this up so that it looks good +#let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee")).with(numbering: "1.1") //tem +#let corollary = thmplain( //cor + "corollary", + "Corollary", + base: "theorem", + titlefmt: strong +) +#let definition = thmbox("definition", "Definition", inset: (x: 1.2em, top: 1em)) //def +#let example = thmplain("example", "Example").with(numbering: none) //exa +#let proof = thmproof("proof", "Proof") //pro +#let remark = thmbox("remark", "Remark") //rem +#let axiom = thmbox("axiom", "Axiom") //axi +#let lemma = thmbox("lemma", "Lemma") //lem + +// Add a note +#let note = thmbox("note", "Note") //nte +